博碩士論文 105553013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:36 、訪客IP:3.138.114.38
姓名 陳祥重(Hsiang-Chung Chen)  查詢紙本館藏   畢業系所 通訊工程學系在職專班
論文名稱 在低功耗無線網路下基於傳輸次數的期望值及平均絶對離差值之RPL路由演算法
(A RPL Scheme Based on Expected Value and Mean Absolute Deviation of Transmission Counts in Low Power Wireless Networks)
相關論文
★ 非結構同儕網路上以特徵相似度為基準之搜尋方法★ 以階層式叢集聲譽為基礎之行動同儕網路拓撲架構
★ 線上RSS新聞資料流中主題性事件監測機制之設計與實作★ 耐延遲網路下具密度感知的路由方法
★ 整合P2P與UPnP內容分享服務之家用多媒體閘道器:設計與實作★ 家庭網路下簡易無縫式串流影音播放服務之設計與實作
★ 耐延遲網路下訊息傳遞時間分析與高效能路由演算法設計★ BitTorrent P2P 檔案系統下載端網路資源之可調式配置方法與效能實測
★ 耐延遲網路中利用訊息編碼重組條件之資料傳播機制★ 耐延遲網路中基於人類移動模式之路由機制
★ 車載網路中以資料匯集技術改善傳輸效能之封包傳送機制★ 適用於交叉路口環境之車輛叢集方法
★ 車載網路下結合路側單元輔助之訊息廣播機制★ 耐延遲網路下以靜態中繼節點(暫存盒)最佳化訊息傳遞效能之研究
★ 耐延遲網路下以動態叢集感知建構之訊息傳遞機制★ 跨裝置影音匯流平台之設計與實作
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在這百家爭鳴的物聯網(IOT)時代,大量的裝置需要連接到網際網路,小到智慧家庭的應用,大到智慧城市及工業4.0。看似無限大的商機,但實際上缺乏統一標準。網際網路工程任務組(IETF)之下的6LoWPAN工作小組定義了IPv6和IEEE 802.15.4間的介面,使大量無線裝置可透過IPv6直接連網。ROLL工作小組訂定了RPL協議,使得基於IPv6的低功耗的無線網路就此形成。它不但低成本、低能耗、適合大量佈署且與現有網際網路協議相容,還有明確的標準可以依循。
RPL協議利用“目標函數”定義組網行為,每個節點都必需依照路徑成本來選定父節點,形成一個最低成本的網路。傳統無線網路,對於路徑成本的計算,使用的是最簡單的“累加法”。延著路徑把每一跳的成本加起來,即是到達根節點的成本。但是累加後的度量值,無法真實反映出路徑的實際成本。舉例來說,總成本為6的路徑,可由不同的路徑集合組成,它可以是{2, 2, 2}、{5, 1}或是{3, 3}等…。假設路徑成本與通訊的距離成正比,那麼在集合中包含較大數值,對於通訊品質則是不利的。但是累加後的度量值,無法分辨父節點的路徑中是否包含長跳距。使得子節點頻繁更換父節點,造成控制訊息在網路內大量傳送、封包流失變的更加嚴重。
本文將以統計學的觀點來篩選父節點的路徑成本,使用近似平均值與標準差的概念,來分析路徑集合,考量計算標準差的時間複雜度較高,改以平均絶對離差來實現,並將成本度量多播到相鄰節點,使得鄰近節點都有足夠的資訊篩選父節點。經模擬後證明,相較於官方定義的兩個目標函數,在高密度節點佈署下,有著更低的封包流失率、略低的時延及微幅增加的吞吐量,對於整體無線網路可靠度來說是一大進步。
摘要(英) In this era of the Internet of Things, a large number of devices need to be connected to the Internet, from smart home applications to smart city and industries 4.0. It seems to be an infinite business opportunity, but in reality, there is no uniform standard. The 6LoWPAN working group under the Internet Engineering Task Force (IETF) defines an interface between IPv6 and IEEE 802.15.4, enabling a large number of wireless devices to connect directly over IPv6. The ROLL Working Group defines the RPL protocol to make a low-power wireless network based on IPv6. Not only is its low cost, low power consumption, but it is also suitable for large deployments and is compatible with existing Internet protocols. Further, there are already standards to follow.
The RPL protocol uses the "objective function" to define networking behavior. Each node must select the parent node according to the path cost to form a network with the lowest cost. Traditional wireless networks use the simplest "accumulation" for path cost calculations. Adding the cost of each hop on the path is the total cost of reaching the root node. However, the accumulated metrics do not truly reflect the actual cost of the path. For example, the total cost is 6 paths. It can consist of a different set of paths, which can be {2, 2, 2}, {5, 1} or {3, 3}, etc. Assume that the path cost is proportional to the distance of the communication. If you include a higher path cost segment in the set, it will have an adverse effect on communication quality. The accumulated metric cannot distinguish whether the parent node′s path contains long hops. The parent node is frequently replaced with the child node, causing the control message to be transmitted in a large amount in the network, and the packet loss is more serious.
This article will determine the path cost of the parent node from a statistical point of view, using the concept of approximate mean and standard deviation to analyze the path set. Considering the high time complexity of calculating the standard deviation, the mean absolute deviation is used instead, and the cost metric is multicast to neighbor nodes so that the neighbor nodes have enough information to decide the parent node. After the simulation, it is proved that compared with the officially defined two objective functions, under the deployment of high-density nodes, there is a lower packet loss rate, a slightly lower delay, and a slightly increased throughput. It is a big step forward for overall wireless network reliability.
關鍵字(中) ★ 低功耗無線網路
★ 平均絕對離差
★ 路由演算法
★ 無線感測網路
關鍵字(英) ★ RPL
★ WSN
★ IPv6
★ Mean absolute deviation
★ Low power wireless network
★ Routing Protocol
論文目次 摘要.....................................................i
Abstract................................................ii
致謝....................................................iii
目錄.....................................................iv
圖目錄...................................................vi
表目錄.................................................viii
第一章 簡介................................................1
1.1 背景..............................................1
1.2 協議概述...........................................2
1.3 動機與問題描述.....................................3
1.4 研究內容與貢獻.....................................4
第二章 背景知識與文獻探討...................................6
2.1 背景知識...........................................6
2.1.1 拓樸..............................................8
2.1.2 節點類型..........................................9
2.1.3 實例(Instance)....................................9
2.1.4 ICMPv6控制訊息....................................11
2.1.5 網路建立..........................................13
2.1.6 操作模式..........................................15
2.1.7 路由維護..........................................16
2.2 相關文獻............................................17
第三章 目標函數設計.........................................22
3.1 平台選擇............................................22
3.2 目標函數 (Objective Function, OF)..................22
3.3 度量容器 (Metric Container)........................24
3.4 演算法.............................................26
3.4.1 理論.............................................26
3.4.2 平均絶對離差(Mean Absolute Deviation).............28
3.4.3 方法與流程........................................29
第四章 軟體模擬與數據分析..................................33
4.1 模擬環境..........................................33
4.2 實驗設計..........................................34
4.3 節點佈局..........................................36
4.4 數據分析..........................................39
第五章 結論與未來研究工作..................................51
5.1 結論.............................................51
5.2 未來研究.........................................52
參考文獻..................................................53
參考文獻 [1] Tim Winter, Pascal Thubert, Anders Brandt, Jonathan W. Hui, Richard Kelsey, Philip Levis, Kris Pister, Rene Struik, JP. Vasseur and Roger K. Alexander, “RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks”, Internet Engineering Task Force (IETF), RFC 6550, March 2012. [Online]. Available: https://tools.ietf.org/html/rfc6550
[2] Pascal Thubert, “Objective function zero for the routing protocol for lowpower and lossy networks (RPL)”, Internet Engineering Task Force (IETF), RFC 6552, March 2012. [Online]. Available: https://tools.ietf.org/html/rfc6552
[3] Omprakash Gnawali and Philip Levis, “The Minimum Rank with Hysteresis Objective Function”, Internet Engineering Task Force (IETF), Fremont, RFC 6719, September 2012. [Online]. Available: https://tools.ietf.org/html/rfc6719
[4] Philip Levis, Thomas Heide Clausen, Jonathan Hui, Omprakash Gnawali, and JeongGil Ko, “The Trickle algorithm,”, Internet Engineering Task Force (IETF), RFC 6206, March 2011. [Online]. Available: https://tools.ietf.org/html/rfc6206
[5] Paul Sanmartin, Aldo Rojas, Luis Fernandez, Karen Avila, Daladier Jabba and Sebastian Valle, “Sigma Routing Metric for RPL Protocol,” Sensors, vol. 18, no. 4, pp. 1277, April 2018.
[6] Nadeem Javaid, Akmal Javaid, Imran Ali Khan and Karim Djouani, “Performance Study of ETX base Wireless Routing Metrics,” in Proceedings of The 2nd International Conference on Computer, Control and Communication, Karachi, Pakistan, February 2009, pp. 17-18.
[7] Wei Xiao, Nan Jiang, Jianfei Liu and Hongzhou Shi, “An optimization of the object function for routing protocol of low-power and Lossy networks,” in Proceedings of The 2nd International Conference on Systems and Informatics (ICSAI) , Shanghai, China, November 2014, pp. 15-17.
[8] Al-Khateeb Anwar and Jun-Kyoung Kim “DORMS: design of multi-objective optimized RPL and MAC protocols for wireless sensor network applications,” in Proceedings of The IEEE Ninth International Conference on Ubiquitous and Future Networks (ICUFN), Milan, Italy, July 2017, pp. 147–152
[9] Kunal Gs and Doreswamy Hosahalli, “Dual-Objectives Mobile-RPL Routing Protocol Based QoS Data Gathering over Low Power Lossy Networks for Smart City Applications : DMRPL,” in Proceedings of The International Conference on Advances in Computing, Communications and Informatics (ICACCI), Bangalore, India, September 2018, pp.19-22.
[10] Theodore Zahariadis Panos Trakadas, “Design Guidelines for Routing Metrics Composition in LLN,” [Online]. Available: https://tools.ietf.org/html/draft-zahariadis-roll-metrics- composition-03
[11] Nikesh Man Shakya, Mehdi Mani and Noel Crespi, “SEEOF Smart Energy Efficient Objective Function,” in Proceedings of The Global Internet of Things Summit (GIoTS), Geneva, Switzerland, June 2017, pp. 6-9.
[12] Natanael Sousa, Jos´e V. V. Sobral, Joel J. P. C. Rodrigues, Ricardo A. L. Rabˆelo and Petar Solic,“ERAOF: A new RPL protocol objective function for Internet of Things applications,” in Proceedings of The 2nd International Multidisciplinary Conference on Computer and Energy Science (SpliTech), July 2017, pp. 12-14.
[13] Lai Nguyen, Laurent Lefevre, and Denis Genon-Catalot, ”A composite metric for dynamic
routing in networked control systems,” in Proceedings of IEEE 14th International Conference on Industrial Informatics , Poitiers, France, July 2016 , pp.672-675.
[14] Panagiotis Karkazis, Helen C. Leligou, Lambros Sarakis, Theodore Zahariadis, Panagiotis Trakadas, Terpsichori H. Velivassaki and Christos Capsalis, “Design of primary and composite routing metrics for RPL-compliant wireless sensor networks,” in Proceedings of The Telecommunications and Multimedia (TEMU), Chania, Greece, August 2012, pp. 13-18.
[15] Patrick-Olivier Kamgueu, Emmanuel Nataf and Thomas Ndie Djotio, “On design and deployment of fuzzy-based metric for routing in low-power and lossy networks,” in Proceedings of The IEEE 40th Local Computer Networks Conference Workshops (LCN Workshops), pp. 789-795, October 2015.
[16] Hanane Lamaazi and Nabil Benamar, “RPL Enhancement using a new Objective Function based on combined metrics,” in Proceedings of The 13th International Wireless Communications and Mobile Computing Conference (IWCMC), July 2017, pp. 1459-1464.
[17] Emran Aljarrah, “Deployment of Multi-Fuzzy Model Based Routing in RPL to Support Efficient IoT,” International Journal of Communication Networks and Information Security (IJCNIS), vol. 9, no. 3, pp. 457–465, December 2017.
[18] Jean-Philippe Vasseur and Adam Dunkels, “Interconnecting Smart Objects with IP : The Next Internet,” Morgan Kaufmann, 2010.
[19] Agus Kurniawan, “Practical Contiki-NG : Programming for Wireless Sensor Networks,” Apress, 2018.
[20] Antonio Liñán Colina, Alvaro Vives, Marco Zennaro, Antoine Bagula and Ermanno Pietrosemoli, “Internet of Things (IoT) in 5 days,” ShareAlike 4.0, 2016.
[21] Tsung-Han Lee, Xiang-Shen Xie, Lin-Huang Chang, “RSSI-based IPv6 routing metrics for RPL in low-power and lossy in Proceedings of The IEEE International Conference on Systems Man and Cybernetics (SMC), October 2014, pp. 5-8.
[22] Chenyang Ji, Remous-Aris Koutsiamanis, Nicolas Montavont, Periklis Chatzimisios, Diego Dujovne and Georgios Z. Papadopoulos, “TAOF: Traffic Aware Objective Function for RPL-based Networks,” in Proceedings of The Global Information Infrastructure and Networking Symposium (GIIS), Thessaloniki, Greece, October 2018, pp. 23-25.
[23] Nurrahmat Pradeska, Widyawan, Warsun Najib and Sri Suning Kusumawardani, “Performance Analysis of Objective Function MRHOF and OF0 in Routing Protocol RPL IPV6 Over Low Power Wireless Personal Area Networks (6LoWPAN),” in Proceedings of The 8th International Conference (ICITEE), Yogyakarta, Indonesia, October 2016, pp. 5-6.
[24] Aleksandar Velinov and Aleksandra Mileva, “Running and testing applications for contiki OS using cooja simulator,” in Proceedings of The International Conference on Information Technology and Development of Education (ITRO), Zrenjanin, Republic of Serbia, June 2016. pp. 279-285.
指導教授 胡誌麟 審核日期 2019-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明