參考文獻 |
1. Luo, H., Yang, Y., Tong, B., Wu, F., & Fan, B. (2018). Traffic sign recognition using a multi-task convolutional neural network. IEEE Transactions on Intelligent Transportation Systems, 19(4), 1100-1111.
2. Ding, C., & Tao, D. (2018). Trunk-branch ensemble convolutional neural networks for video-based face recognition. IEEE transactions on pattern analysis and machine intelligence, 40(4), 1002-1014.
3. Wu, B. F., & Lin, C. H. (2018). Adaptive Feature Mapping for Customizing Deep Learning Based Facial Expression Recognition Model. IEEE Access, 6, 12451-12461.
4. Guo, J., Lei, Z., Wan, J., Avots, E., Hajarolasvadi, N., Knyazev, B., & Escalera, S. (2018). Dominant and Complementary Emotion Recognition from Still Images of Faces. IEEE Access, 6, 26391-26403.
5. Zhao, Y., Wang, Z. Q., & Wang, D. (2019). Two-Stage Deep Learning for Noisy-Reverberant Speech Enhancement. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 27(1), 53-62.
6. Sahraeian, R., & Van Compernolle, D. (2017). Crosslingual and Multilingual Speech Recognition Based on the Speech Manifold. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 25(12), 2301-2312.
7. Zheng, N., & Zhang, X. L. (2019). Phase-Aware Speech Enhancement Based on Deep Neural Networks. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 27(1), 63-76.
8. Deng, J., Xu, X., Zhang, Z., Fruhholz, S., Schuller, B., Deng, J., & Schuller, B. (2018). Semisupervised autoencoders for speech emotion recognition. IEEE/ACM Transactions on Audio, Speech and Language Processing (TASLP), 26(1), 31-43.
9. Zhang, M., Yu, N., & Fu, G. (2018). A Simple and Effective Neural Model for Joint Word Segmentation and POS Tagging. IEEE/ACM Transactions on Audio, Speech and Language Processing (TASLP), 26(9), 1528-1538.
10. Wei, X., Huang, H., Nie, L., Zhang, H., Mao, X. L., & Chua, T. S. (2017). I know what you want to express: sentence element inference by incorporating external knowledge base. IEEE Transactions on Knowledge and Data Engineering, 29(2), 344-358.
11. Zhang, B., Xiong, D., Su, J., & Duan, H. (2017). A Context-Aware Recurrent Encoder for Neural Machine Translation. IEEE/ACM Transactions on Audio, Speech and Language Processing (TASLP), 25(12), 2424-2432.
12. Dethlefs, N. (2017). Domain Transfer for Deep Natural Language Generation from Abstract Meaning Representations. IEEE Computational Intelligence Magazine, 12(3), 18-28.
13. Liu, M., Rus, V., & Liu, L. (2017). Automatic Chinese factual question generation. IEEE Transactions on Learning Technologies, 10(2), 194-204.
14. Korpusik, M., & Glass, J. (2017). Spoken language understanding for a nutrition dialogue system. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 25(7), 1450-1461.
15. Agarwal, A., Baechle, C., Behara, R., & Zhu, X. (2018). A Natural language processing framework for assessing hospital readmissions for patients with COPD. IEEE journal of biomedical and health informatics, 22(2), 588-596.
16. Dickmanns, E. D. (2017). Developing the Sense of Vision for Autonomous Road Vehicles at UniBwM. Computer, 50(12), 24-31.
17. Hanna, M. J., & Kimmel, S. C. (2017). Current US federal policy framework for self-driving vehicles: opportunities and challenges. Computer, 50(12), 32-40.
18. Guo, Y., Jiao, L., Wang, S., Wang, S., & Liu, F. (2018). Fuzzy Sparse Autoencoder Framework for Single Image Per Person Face Recognition. IEEE transactions on cybernetics, 48(8), 2402-2415.
19. Loquercio, A., Maqueda, A. I., del-Blanco, C. R., & Scaramuzza, D. (2018). Dronet: Learning to fly by driving. IEEE Robotics and Automation Letters, 3(2), 1088-1095.
20. Fan, S., Ng, T. T., Koenig, B. L., Herberg, J. S., Jiang, M., Shen, Z., & Zhao, Q. (2018). Image visual realism: From human perception to machine computation. IEEE transactions on pattern analysis and machine intelligence, 40(9), 2180-2193.
21. Michaud, L. N. (2018). Observations of a New Chatbot: Drawing Conclusions from Early Interactions with Users. IT Professional, 20(5), 40-47.
22. Yan, C., Zhang, Y., Xu, J., Dai, F., Li, L., Dai, Q., & Wu, F. (2014). A highly parallel framework for HEVC coding unit partitioning tree decision on many-core processors. IEEE Signal Processing Letters, 21(5), 573-576.
23. Yan, C., Zhang, Y., Xu, J., Dai, F., Zhang, J., Dai, Q., & Wu, F. (2014). Efficient parallel framework for HEVC motion estimation on many-core processors. IEEE Transactions on Circuits and Systems for Video Technology, 24(12), 2077-2089.
24. Msegosa, A. R., Martinez, A. M., & Borchani, H. (2016). Probabilistic graphical models on multi-core CPUs using Java 8. IEEE Computational Intelligence Magazine, 11(2), 41-54.
25. Hou, N., He, F., Zhou, Y., Chen, Y., & Yan, X. (2018). A parallel genetic algorithm with dispersion correction for HW/SW partitioning on multi-core CPU and many-core GPU. IEEE Access, 6, 883-898.
26. Hewitt, C., Bishop, P., & Steiger, R. (1973). Session 8 formalisms for artificial intelligence universal modular actor formalism for artificial intelligence. In Advance Papers of the Conference (Vol. 3, p. 235). Stanford Research Institute.
27. Bauer, D. A., & Mäkiö, J. Actor4j: A Software Framework for the Actor Model Focusing on the Optimization of Message Passing.
28. Bordini, R. H., &Hübner, J. F. (2004).Jason–a java-based agentspeak interpreter used with saci for multi-agent distribution over the net.On-line at http://jason.sourceforge.net.
29. Braubach, L., Lamersdorf, W., &Pokahr, A. (2003).Jadex: Implementing a BDI-infrastructure for JADE agents.
30. Nunes, I., Lucena, C. J. P. D., & Luck, M. (2011). BDI4JADE: a BDI layer on top of JADE. ProMAS 2011, 88-103.
31. Levitan, I. B., & Kaczmarek, L. K. (2002). The cell: cell and molecular biology. Oxford University Press, USA.
32. Lee, J., Huber, M. J., Durfee, E. H., & Kenny, P. G. (1994a). UM-PRS: An implementation of the procedural reasoning system for multirobot applications.
33. Wilkins, K. L. M. D. E., & Myers, M. (1997).The Act Formalism.SRI International Artificial Intelligence Center.
34. Wilkins, D. E., & Myers, K. L. (1995). A common knowledge representation for plan generation and reactive execution. Journal of Logic and Computation, 5(6), 731-761.
35. Lee, J., &Durfee, E. H. (1994b).Structured circuit semantics for reactive plan execution systems.Ann Arbor, 1001, 48109.
36. Bellifemine, F., Poggi, A., &Rimassa, G. (1999, April).JADE–A FIPA-compliant agent framework.In Proceedings of PAAM (Vol. 99, No. 97-108, p. 33).
37. Braubach, L., Lamersdorf, W., &Pokahr, A. (2003). Jadex: Implementing a BDI-infrastructure for JADE agents.
38. Paulussen, T. O., Jennings, N. R., Decker, K. S., &Heinzl, A. (2003).Distributed patient scheduling in hospitals.
39. Bordini, R. H., &Hübner, J. F. (2004).Jason–a java-based agentspeak interpreter used with saci for multi-agent distribution over the net.On-line at http://jason.sourceforge.net.
40. Nunes, I., Lucena, C. J. P. D., & Luck, M. (2011). BDI4JADE: a BDI layer on top of JADE. ProMAS 2011, 88-103.
41. Ching-Han Chen, Ming-Yi Lin, Xing-Chen Guo, "High-level Modeling and Synthesis of Smart Sensor Networks for Industrial Internet of Things", Computers & Electrical Engineering, Vol.61, July 2017, pp.48–66 .
42. S. Koceski and N. Koceska, "Evaluation of an assistive telepresence robot for elderly healthcare," J. Med. Syst., vol. 40, no. 5, p. 121, May 2016.
43. M. Mast et al., "Design of the human-robot interaction for a semiautonomous service robot to assist elderly people," in Ambient Assisted Living, R. Wichert and H. Klausing, Eds. Cham, Switzerland: Springer, 2015, pp. 15–29.
44. E. Sato-Shimokawara, S. Nomura, Y. Shinoda, H. Lee, T. Takatani, K. Wada, and T. Yamaguchi, "A cloud based chat robot using dialogue histories for elderly people," 2015 24th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), 2015.
45. C. Jayawardena, I. Kuo, E. Broadbent, and B. A. MacDonald, "Socially assistive robot healthbot: design, implementation, and field trials," IEEE Syst. J., vol. 10, no. 3, pp. 1056–1067, Sep. 2016.
46. H. M. Gross et al., "ROREAS: robot coach for walking and orientation training in clinical post-stroke rehabilitation—prototype implementation and evaluation in field trials," Auton. Robot, vol. 41, no. 3, pp. 679–698, Mar. 2017.
47. A. Tapus, C. Ţăpuş, and M. J. Matarić, "User—robot personality matching and assistive robot behavior adaptation for post-stroke rehabilitation therapy," Intell. Service Robot, vol. 1, no. 2, p. 169, Apr. 2008.
48. K. Swift-Spong, E. Short, E. Wade, and M. J. Matarić, "Effects of comparative feedback from a Socially Assistive Robot on self-efficacy in post-stroke rehabilitation," in IEEE Int. Conf. Rehabil. Robot. (ICORR), Singapore: IEEE, 2015, pp. 764–769.
49. R. Liu and X. Zhang, "Fuzzy context-specific intention inference for robotic caregiving," Int. J. Advanced Robot. Syst., vol. 13, no. 5, pp. 1–14, Oct. 2016.
50. K. Gerling, D. Hebesberger, C. Dondrup, T. Kortner, and M. Hanheide, "Robot deployment in long-term care," Zeitschrift für Gerontologie und Geriatrie, vol. 49, no. 4, pp. 288–297, Jun. 2016.
51. Y. Zhang, Y. Hu, P. Zhang, and W. X. Zhang, "Development of personal assistant system with human computer interaction," Int. J. Recent Trends Human Comput. Interaction (IJHCI), vol. 5, no. 3, pp. 40–50 Jul/Aug 2014.
52. E. Clotet, D. Martinez, J. Moreno, M. Tresanchez, and J. Palacin, "Assistant Personal Robot (APR): conception and application of a tele-operated assisted living robot," Sensors (Basel), vol. 16, no. 5, p. 610, Apr. 2016.
53. N. Reich-Stiebert and F. Eyssel, "Learning with educational companion robots? Toward attitudes on education robots, predictors of attitudes, and application potentials for education robots," Int. J. Social Robot., vol. 7, no. 5, pp. 875–888, Nov. 2015.
54. A. Causo, G. T. Vol, I. M. Chen, and S. H. Yeo, "Design of robots used as education companion and tutor," in Robotics and Mechatronics, Cham, Switzerland: Springer, 2016, pp. 75–84.
55. I. Aaltonen, A. Arvola, P. Heikkilä, and H. Lammi, "Hello pepper, May I tickle you? Children’s and adults’ responses to an entertainment robot at a shopping mall," in Proc. Companion 2017 ACM/IEEE Int. Conf. Human-Robot Interaction, Vienna, Austria, 2017, pp. 53–54.
56. M. E. Foster et al., "The MuMMER project: engaging human-robot interaction in real-world public spaces," in ICSR 2016. LNCS (LNAI), vol. 9979, A. Agah, J. J. Cabibihan, A. M. Howard, M. A. Salichs, H. He, Eds. Cham: Springer, 2016, pp. 753–763.
57. Y. Kim and W. C. Yoon, "Generating task-oriented interactions of service robots," IEEE Trans. Syst., Man, Cybern., Syst., vol. 44, no. 8, pp. 981–994, Aug. 2014.
58. S. Schiffer, A. Ferrein, and G. Lakemeyer, "CAESAR: an intelligent domestic service robot," Intell. Service Robot, vol. 5, no. 4, pp. 259–273, Oct. 2012.
59. H. S. Wang, J. Ren, and X. Li, "Natural spoken instructions understanding for rescue robot navigation based on cascaded Conditional Random Fields," in 9th Int. Conf. Human Syst. Interactions (HSI), Portsmouth, UK, 2016, pp. 216–222.
60. T. Kusu, Y. Ito, T. Kida, T. Shimada, M. Takahashi, Y. Nomoto, Y. Tsuchiya, M. Narita, and Y. Kato, "A Virtual Campus Tour Service Using Remote Control Robots on Robot Service Network Protocol," 2013 27th International Conference on Advanced Information Networking and Applications Workshops, 2013.
61. A. S. Rao and M. P. Georgeff, "Modeling rational agents within a BDI-architecture." Proceedings of the Second International Conference on Principles of Knowledge Representation and Reasoning, 1991.
62. M. C. Wu and C. H. Chen, "CellS: A cell-inspired efficient software framework for Intelligent System." 2018 IEEE International Conference on Consumer Electronics-Taiwan (IEEE 2018 ICCE-TW), 2018.
63. N. Davari and A. Gholami, "An Asynchronous Adaptive Direct Kalman Filter Algorithm to Improve Underwater Navigation System Performance,"IEEE Sensors Journal, vol. 17, no. 4, pp. 1061–1068, 2017.
64. W. Jiang, Y. Li, and C. Rizos, "A Multisensor Navigation System Based on an Adaptive Fault-Tolerant GOF Algorithm,"IEEE Transactions on Intelligent Transportation Systems, vol. 18, no. 1, pp. 103–113, 2017.
65. Q. Zeng, J. Wang, Q. Meng, X. Zhang, and S. Zeng, "Seamless Pedestrian Navigation Methodology Optimized for Indoor/Outdoor Detection," IEEE Sensors Journal, vol. 18, no. 1, pp. 363–374, Jan. 2018.
66. U. Rehman and S. Cao, "Augmented-Reality-Based Indoor Navigation: A Comparative Analysis of Handheld Devices versus Google Glass," IEEE Transactions on Human-Machine Systems, pp. 1–12, 2016.
67. H. Ju, S. Y. Park, and C. G. Park, "A Smartphone-Based Pedestrian Dead Reckoning System with Multiple Virtual Tracking for Indoor Navigation," IEEE Sensors Journal, vol. 18, no. 16, pp. 6756–6764, 2018.
68. E. Fresk, G. Nikolakopoulos, and T. Gustafsson, "A Generalized Reduced-Complexity Inertial Navigation System for Unmanned Aerial Vehicles," IEEE Transactions on Control Systems Technology, vol. 25, no. 1, pp. 192–207, 2017.
69. H. Mahmoudi and M. M. Homayounpour, "A Persian spoken dialogue system using POMDPs," 2015 The International Symposium on Artificial Intelligence and Signal Processing (AISP), 2015.
70. S. Ondas and J. Juhar, "Towards human-machine dialog in Slovak," 2016 International Conference on Systems, Signals and Image Processing (IWSSIP), 2016.
71. E. Seto and N. Kitaoka, "User adaptation of input-response pairs in an example-based dialog system using distributed representation of words," 2017 International Conference on Advanced Informatics, Concepts, Theory, and Applications (ICAICTA), 2017.
72. D. Ramachandran, P. Z. Yeh, W. Jarrold, B. Douglas, A. Ratnaparkhi, R. Provine, J. Mendel, and A. Emfield, "An end-to-end dialog system for TV program discovery," 2014 IEEE Spoken Language Technology Workshop (SLT), 2014.
73. D. Chen and C. Manning, "A fast and accurate dependency parser using neural networks," in Proc. 2014 Conf. Empirical Methods Natural Language Process. (EMNLP), Doha, Qatar: Association for Computational Linguistics, 2014, pp. 740–750.
74. M. Hadley and P. Sandoz. (2009, September). JSR 311: JAX-RS: The JavaTM API for RESTful Web Services. Available: http://jcp.org/en/jsr/detail?id=311.
75. M. Hadley, S. Pericas-Geertsen, and P. Sandoz, "Exploring hypermedia support in Jersey," presented at the Proc. First Int. Workshop on RESTful Des, Raleigh, North Carolina, USA, 2010.
76. IBM. (2007). IBM introduces ready-to-use cloud computing. Available: https://www-03.ibm.com/press/us/en/pressrelease/22613.
77. J. Bort. (2017). Amazon′s Massive Cloud Business Hit Over $12 Billion in Revenue and $3 Billion in Profit in 2016. Available: http://www.businessinsider.com/amazons-cloud-businesshits-over-12-billion-in-revenue-2017-2, 2017.
78. M. Rosoff. (2015). Microsoft Vows to have $20 Billion Incloud Revenue by 2018. Available: http://www.businessinsider.com/microsoft-20-billion-cloud-revenue-and-1-billion-windows-10-pcs-by-2018-2015-4/?IR=T#iz25lv5lyAbEVkd3.97.
79. A. Koubaa and B. Qureshi, "DroneTrack: cloud-based real-time object tracking using unmanned aerial vehicles over the internet," IEEE Access, vol. 6, pp. 13810–13824, Mar. 2018.
80. J. J. Kuffner, "Cloud-enabled robots," in Proc. IEEE-RAS Int. Conf. Humanoid Robot, Nashville, TN, USA, 2010, pp. 176–181.
81. H. Liu and P. Singh, "ConceptNet — a practical commonsense reasoning tool-kit," BT Technol. J., vol. 22, no. 4, pp. 211–226, Oct. 2004.
82. W. T. Chen, S. C. Lin, S. L. Huang, Y. S. Chung, and K. J. Chen, "E-HowNet and automatic construction of a lexical ontology," in Proc. 23rd Int. Conf. Comput. Linguistics: Demonstrations, Beijing, China, 2010.
83. [S.-M. JI and X.-H. HUANG, "Review of development and application of industrial robot technology", Journal of Mechanical & Electrical Engineering, vol. 32, no. 1, pp. 1-13, 2015.
84. T. Gomi, " New Al and service robots", The Industrial Robot, vol. 30, no. 2, pp. 123-138, 2003
85. ISO Press, "Manipulating Industrial Robots – Vocabulary", ISO Standard 8373,1994
86. D. Ball, P. Ross, A. English, P. Milani, D. Richards, A. Bate, B.Upcroft, G. Wyeth, C. Corke, "Farm Workers of the Future: Vision-Based Robotics for Broad-Acre Agriculture", IEEE Robotics & Automation Magazine, vol. 24, no. 3, pp. 97-107, 2017.
87. E. Probst, " Flexible Robot Arm Boosts Production", Modern Machine Shop, vol. 86, no. 4, pp. 112-124, 2013.
88. S. Berman, Y. Edan, M. Jamshidi, "Navigation of decentralized autonomous automatic guided vehicles in material handling ", IEEE Transactions on Robotics and Automation,vol. 19, no. 4, pp. 743-749, 2003.
89. Y. Yang, L. Li, "The design and implementation of a smart e-Receptionist", IEEE Potentials, vol. 32, no. 4, pp. 22-27, 2013.
90. Kimitoshi Yamazaki, Ryohei Ueda, Shunichi Nozawa, Mitsuharu Kojima, Kei Okada, Kiyoshi Matsumotoa, Masaru Ishikawa, Isao Shimoyam, and Masayuki Inaba, "Home-Assistant Robot for an Aging Society", Proceedings of the IEEE, vol. 100, no. 8, pp. 2429-2441, 2012.
91. L. Zorn, F. Nageotte, P. Zanne, A. Legner, B. Dallemagne, J. Marescaux, M. Mathelin, " A Novel Telemanipulated Robotic Assistant for Surgical Endoscopy: Preclinical Application to ESD " IEEE Transactions on Biomedical Engineering, vol. 65, no. 4, pp. 797-808, 2017.
92. M. HAEGELE, “Executive Summary World Robotics 2017 Service Robots", World Robotics - Service Robots, pp. 12-19, 2017.
93. J. Choi, Y. Cho, J. Choi, J. Choi, "A Layered Middleware Architecture for Automated Robot Services", International Journal of Distributed Sensor Networks, vol. 2014, 2014.
94. Y. Kim, W. Yoon, "Generating Task-Oriented Interactions of Service Robots" IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, vol. 44, no. 8, pp. 981-994, 2014.
95. M. Obrist, E. Gatti, E. Maggioni, C.-T. Vi, C. Velasco, "Multisensory Experiences in HCI", IEEE Computer Society,vol. 24, no. 2, pp. 9-13, 2017.
96. W. Guo, X. Sheng, H. Liu, X. Zhu, " Toward an Enhanced Human–Machine Interface for Upper-Limb Prosthesis Control With Combined EMG and NIRS Signals" IEEE Transactions on Human-Machine Systems, vol. 47, no. 4, pp. 564-575, 2017.
97. S. Rautaray, A. Agrawal, "Real Time Multiple Hand Gesture Recognition System for Human Computer Interaction" International Journal of Intelligent Systems and Applications vol. 4, no. 5, pp. 56-64, 2012.
98. A. Jungk, B. Thull, L. Fehrle, A. Hoeft, " A Case Study in Designing Speech Interaction with a Patient Monitor", Journal of Clinical Monitoring and Computing, vol. 16, no. 4, pp. 295-307, 2000.
99. J. Hirschberg, B. Ballard, D. Hindle, "Natural language processing", AT&T Technical Journal vol. 67, no. 1, pp. 41-57, 1988.
100. V. Gatteschi, F. Lamberti, P. Montuschi, A. Sanna, "Semantics-Based Intelligent Human-Computer Interaction", IEEE Intelligent Systems, vol. 31, no. 4, pp. 11-21, 2016.
101. M. Ralph, M. Moussa, " Toward a Natural Language Interface for Transferring Grasping Skills to Robots", IEEE Transactions on Robotics Software, vol. 24, no. 2, pp. 468-475, 2008.
102. J. Tao, F. Zheng, A. Li, Y. Li, "Advances in Chinese Natural Language Processing and Language resources", Speech Database and Assessments, 2009 Oriental COCOSDA International Conference on, 2009.
103. Y. Sun, "For Computers, Too, It’s Hard to Learn to Speak Chinese", MIT Technology Review:https://www.technologyreview.com/s/608249/for-computers-too-its-hard-to-learn-to-speak-chinese/, 2017.
104. S.-K. Wong, C. Venkatratnam, "Pick and place mobile robot for the disabled through voice commands", Robotics and Manufacturing Automation (ROMA), 2016 2nd IEEE International Symposium on, 2016.
105. S. Rosa, A. Russo, A. Saglinbeni, G. Toscana, " Vocal interaction with a 7-DOF robotic arm for object detection, learning and grasping", Human-Robot Interaction (HRI), 2016 11th ACM/IEEE International Conference on, 2008.
106. L. F. D. Haro, R. Cordoba,J. D. Fuente, D. A. Peces, J. M. B. Mera, " Low-Cost Speaker and Language Recognition Systems Running on a Raspberry Pi", IEEE Latin America Transactions, vol. 12, no. 4, pp. 755-763, 2014.
107. Y. J, L. She, Y. Cheng, J. Bao, J. Y. Chai, N. Xi, " Program robots manufacturing tasks by natural language instructions", Automation Science and Engineering (CASE), 2016 IEEE International Conference on, pp. 21-25, 2016. |