博碩士論文 106522121 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:3.135.200.211
姓名 林正陽(Cheng-Yang Lin)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 以模擬駕駛行為替代真實駕駛行為之可行性研究
(Feasibility Study of Simulated Driving Behavior Replacing Real Driving Behavior)
相關論文
★ 基於最大期望算法之分析陶瓷基板機器暗裂破片率★ 基於時間序列預測的機器良率預測
★ 基於OpenPose特徵的行人分心偵測★ 建構深度學習CNN模型以正確分類傳統AOI模型之偵測結果
★ 一種結合循序向後選擇法與回歸樹分析的瑕疵肇因關鍵因子擷取方法與系統-以紡織製程為例★ 融合生成對抗網路及領域知識的分層式影像擴增
★ 針織布異常偵測方法研究★ 基於工廠生產資料的異常機器維修預測
★ 萃取駕駛人在不同環境之駕駛行為方法★ 基於刮痕瑕疵資料擴增的分割拼接影像生成
★ 應用卷積神經網路於航攝影像做基於坵塊的水稻判釋之研究★ 採迴歸樹進行規則探勘以有效同時降低多種紡織瑕疵
★ 應用增量式學習於多種農作物判釋之研究★ 應用自動化測試於異質環境機器學習管道之 MLOps 系統
★ 農業影像二元分類:坵塊分離的檢測★ 應用遷移學習於胚布瑕疵檢測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 世界衛生組織(WHO)統計,全球每年交通事故約造成135萬人死亡,排名全球十大死因第9名。同時交通事故所衍生的經濟代價也相當驚人,全球每年國內生產總值(GDP)因交通事故而損失3%,在台灣約為4,750億元。足以顯見,交通事故不只帶來天人永隔的傷痛,還將損耗國家及全球經濟。
危險駕駛行為容易造成交通事故,為了識別異常行為,需要建構駕駛行為模型,過去已有許多團隊於真實駕駛環境下收集危險駕駛行為,並建立危險駕駛行為模型進行判別,但收集危險駕駛行為對於設備及場地的維護成本極高,再者我們認為即使於特定合格場所收集危險駕駛行為依舊存在相當大的風險。而在本團隊過去研究當中,提出一套基於駕駛行為的駕駛者身分驗證系統,此系統中建構了一個以智慧型手錶收集駕駛者腕部行為資料的模擬駕駛環境,因結合智慧型手錶,具有建構模擬環境成本低、設備搭配性高及移植性強等優勢,且許多危險駕駛行為與腕部動作存在直接關聯性,這些因素都使得在此環境下收集危險駕駛行為更加具有優勢。
然而,目前並沒有任何研究明確指出,以模擬駕駛行為預測模型識別真實駕駛行為的可行性。 而且,也沒有任何能有效利用模擬的危險駕駛行為模型的先例。 因此,我們期望本研究最終能達成:在駕駛者識別等其他應用中,模擬駕駛行為模型可以完全取代真實駕駛行為模型。藉由此概念,對於所有不符合正常道路駕駛原則之駕駛行為,例如: 疲勞駕駛、酒駕等危險駕駛行為,我們可以透過模擬環境收集這些危險駕駛行為資料,並將其應用在識別真實環境中的危險駕駛行為,以此提供市場一個更加安全及可靠的危險駕駛判別機制。
摘要(英) According to the World Health Organization (WHO). Road traffic accidents, the leading cause of death by injury and the tenth-leading cause of all deaths globally. An estimated 1.2 million people are killed in road crashes each year, and as many as 50 million are injured. At the same time, the economic costs derived from traffic accidents are quite high, also the gross domestic product (GDP) of the world is 3% lost due to traffic accidents each year. It is easily to tell that traffic accidents will not only bring the injured but also affect global economy.
Risk driving behavior is easy to cause traffic accidents. In order to identify risk behaviors, it is necessary to construct a driving behavior model. In the past, many teams have already collected risk driving behaviors in a real driving environment and build risk driving behavior models for verification. Collecting risk driving behaviors in real environment cost extremely high, in maintenance, and we believe that there is still considerable risk in collecting risk driving behaviors at any locations.
In the past research, a novel driver identity verification system based on Gaussian Mixture Model’s driving behavior was proposed. The system constructs a simulated driving environment which collects the driver′s wrist behavior data from a smartwatch. Due to the smartwatch based, it has the advantages of constructing simulation environment with low cost and strong portability also lots of risk driving behaviors are directly related to the wrist movements. These factors make it more suitable for collecting risk driving behaviors in this environment.
However, no research has clearly pointed out the feasibility of using the simulated driving behavior prediction model to identify real driving behavior at present. Moreover, there are no precedents for effectively utilizing the simulated dangerous driving behavior model. Therefore, we expect this study to achieve: In other applications such as driver identification, the simulated driving behavior model can completely replace the real driving behavior model. With this concept, for all driving behaviors that do not conform to the normal road driving principles, such as: fatigue driving, drunk driving and other dangerous driving behavior, we can collect these dangerous driving behavior data through the simulated environment and apply it to identify dangerous driving behaviors in the real environment, thus providing a safer and more reliable dangerous driving discriminating mechanism in the market.
關鍵字(中) ★ 穿戴式裝置
★ 駕駛者身分驗證
★ 高斯混合模型
★ 支持向量機
★ 模擬與真實行為之替換
★ 危險駕駛行為偵測
關鍵字(英) ★ Wearable Devices
★ Gaussian Mixture Model
★ Support Vector Machine
★ Replacement between Real Behavior and Simulated Behavior
★ Detection of Risk Driving Behavior
論文目次 中文摘要 I
ABSTRACT III
總目錄 V
表目錄 VII
圖目錄 VIII
一、 緒論 1
1-1 研究背景 1
1-2 研究動機 2
1-3 研究目的 3
1-4 論文架構 4
二、 相關研究 5
2-1 駕駛者行為模型相關研究 5
2-2 危險駕駛行為相關研究 6
2-3 高斯混合模型 8
2-4 支持向量機 9
2-5 堆疊 10
2-6 KULLBACK-LEIBLER DIVERGENCE 11
三、系統架構 12
3-1 資料前處理 13
3-2 特徵擷取 16
3-3 駕駛者行為模型 18

四、研究方法與設計 19
4-1 兩環境中可能造成驗證效能差異之變因 20
4-2 模擬環境連續轉彎情境 21
4-3 模擬環境下小方向盤對兩種感測器駕駛者身分驗證實驗影響 23
五、資料收集設備與實驗環境 25
5-1 模擬駕駛環境 25
5-2 真實駕駛環境 26
5-3 實驗設備 27
六、實驗與討論 29
6-1 實驗一:方向盤大小對於駕駛者身分驗證實驗之影響 29
6-1-1 實驗一分析與討論 32
6-2 實驗二:分析同駕駛者真實駕駛行為與模擬駕駛行為相似度 32
6-2-1 迭代最近點(Iterative Closest Point, ICP Matching) 33
6-2-2 相對熵(Kullback-Leibler Divergence, KL距離) 36
6-2-3 實驗二分析與討論 37
6-3 實驗三:以模擬駕駛行為替代真實駕駛行為之身分驗證實驗 38
6-3-1 實驗三分析與討論 40
6-4 實驗四:正常駕駛以及蛇行駕駛行為驗證 40
6-4-1 實驗四分析與討論 43
七、結論與未來方向 44
參考文獻 46
附錄 50
參考文獻 [1] K. Igarashi, C. Miyajima, K. Itou, K. Takeda, F. Itakura, and H. Abut, "Biometric identification using driving behavioral signals," in IEEE International Conference on Multimedia and Expo,Taipei, Taiwan, 2004, vol. 1, pp. 65-68: IEEE.
[2] C. Miyajima, Y. Nishiwaki, K. Ozawa, T. Wakita, K. Itou, and K. Takeda, "Driver modeling based on driving behavior and its evaluation in driver identification," Proceedings of the IEEE, vol. 95, no. 2, pp. 427-437, 2007.
[3] A. Wahab, C. Quek, C. K. Tan, and K. Takeda, "Driving profile modeling and recognition based on soft computing approach," IEEE Transactions on Neural Networks, vol. 20, no. 4, pp. 563-582, 2009.
[4] H. Qian, Y. Ou, X. Wu, X. Meng, and Y. Xu, "Support vector machine for behavior-based driver identification system," Journal of Robotics, vol. 2010, 2010.
[5] B.-G. Lee, B.-L. Lee, and W.-Y. Chung, "Wristband-type driver vigilance monitoring system using smartwatch," IEEE Sensors Journal, vol. 15, no. 10, pp. 5624-5633, 2015.
[6] R. Chen, M. F. She, X. Sun, L. Kong, and Y. Wu, "Driver recognition based on dynamic handgrip pattern on steeling wheel," in 12th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, Sydney, NSW, 2011, pp. 107-112: IEEE.
[7] A. Riener and A. Ferscha, "Supporting implicit human-to-vehicle interaction: Driver identification from sitting postures," in The first Annual International Symposium on Vehicular Computing Systems (isvcs 2008), Dublin, Ireland, 2008, pp. 10-15: ICST.
[8] B.-L. Lee, B.-G. Lee, and W.-Y. Chung, "Standalone wearable driver drowsiness detection system in a smartwatch," IEEE Sensors Journal, vol. 16, no. 13, pp. 5444-5451, 2016.
[9] C.-H. Yang, C.-C. Chang, and D. Liang, "A novel GMM-based behavioral modeling approach for smartwatch-based driver authentication," Sensors, vol. 18, no. 4, p. 1007, 2018.
[10] Gartner Inc. "artner says worldwide wearable device sales to grow 17 percent in 2017." Aug. 24 2017. [online]. Available: https://www.gartner.com/newsroom/id/3790965[Accessed: June 21, 2019]
[11] Volvo Car Corporation. Remote S for Tesla. [online]. Available: https://itunes.apple.com/us/app/volvo-on-call/id439635293?platform=appleWatch&preserveScrollPosition=true#platform/appleWatch
[12] Hyundai Motor America. MyHyundai with Blue Link.
[online]. Available: https://itunes.apple.com/us/app/hyundai-blue-link/id893514610?platform=appleWatch& preserveScrollPosition=true#platform/appleWatch
[13] Rego Apps. Remote S for Tesla. [online]. Available: https://itunes.apple.com/us/app/remote-s-for-tesla/id991623777?platform=appleWatch&preserveScrollPosition=true&platform=appleWatch#platform/appleWatch&platform=appleWatch
[14] J.L. Douglas, J.C. Junqua, C. Kotropoulos, R. Kuhn, F. Perronnin, I. Pitas, "Recent Advantages in Biometric Person Authentication." in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Oreland, Florida, 2002, pp.4060-4063: IEEE.
[15] D. A. Reynolds, R. C. Rose, and a. processing, "Robust text-independent speaker identification using Gaussian mixture speaker models," IEEE Transactions on Speech and Audio Processing, vol. 3, no. 1, pp. 72-83, 1995.
[16] E. Özgündüz, T. Şentürk, and M. E. Karslıgil, "Efficient off-line verification and identification of signatures by multiclass support vector machines," in International Conference on Computer Analysis of Images and Patterns, Versailles, France, 2005, pp. 799-805: Springer.
[17] D. A. Reynolds, "Automatic speaker recognition: Current approaches and future trends," Speaker Verification: From Research to Reality, vol. 5, pp. 14-15, 2001.
[18] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, "Gene selection for cancer classification using support vector machines," Machine Learning, vol. 46, no. 1-3, pp. 389-422, 2002.
[19] S. Furui, N. Midoricho, S. Musahino, "Speaker-independent isolated word recognition using dynamic features of speech spectrum," IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 34, no. 1, pp. 52-59, 1986.
[20] L. Wang, H. Ning, T. Tan, W. Hu, "Fusion of static and dynamic body biometrics for gait recognition," IEEE Transactions on Circuits and System for Video Technology, vol. 14, no. 2, pp. 149-158, 2004.
[21] Google Inc. Google Map Street View. 2018. [online]. Available: https://www.google.com.tw/maps/@24.9674195,121.1884624,3a,75y,91.68h,87.48t/data=!3m7!1e1!3m5!1sGZVySxRXvBuUBVLw1Esipg!2e0!3e11!7i13312!8i6656?hl=en&authuser=0
[22] United Nations: Household Size and Composition Around the World 2017.[online].Available: http://www.un.org/en/development/desa/population/publications/pdf/ageing/household_size_and_composition_around_the_world_2017_data_booklet.pdf
[23] Ministry of Transport and Communication R.O.C
[online]. Available: https://www.motc.gov.tw/ch/index.jsp
[24] World Health Organization
Available online: https://www.who.int/
[25] National Highway Traffic Safety Administration, The Detection of DWI [online]. Available:
https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/807856-detection-dwi-motorcyclists.pdf
[26] S. O. Madgwick, A. J. Harrison, and R. Vaidyanathan, "Estimation of IMU and MARG orientation using a gradient descent algorithm," in 2011 IEEE international conference on rehabilitation robotics, Zurich, Switzerland, 2011, pp. 1-7: IEEE.
[27] H. M. Kjer and J. Wilm, "Evaluation of surface registration algorithms for PET motion correction," Technical University of Denmark, DTU, Lyngby, Denmark, 2010.
[28] J. Yu, Z. Chen, Y. Zhu, Y. J. Chen, L. Kong, and M. J. Li, "Fine-grained abnormal driving behaviors detection and identification with smartphones," IEEE Transcations on Moblie Computing, vol. 16, no. 8, pp. 2198-2212, 2016.
[29] M. Fazeen, B. Gozick, R. Dantu, M. Bhukhiya, and M. González, "Safe driving using mobile phones," IEEE Transcations on Intelligent Transportation Systems, vol. 13, no. 3, pp. 1462-1468, 2012.
[30] J. Dai, J. Teng, X. Bai, Z. Shen, and D. Xuan, "Mobile phone based drunk driving detection," in 4th International Conference on Pervasive Computing Technologies for Healthcare, Munchen, Germany, 2010, pp. 1-8: IEEE.
指導教授 梁德容(Deron Liang) 審核日期 2019-8-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明