參考文獻 |
1. A. Krizhevsky, I. S. (2012). Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, pp. 1097-1105.
2. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., . . . Isard, M. (2016). Tensorflow: Asystemforlarge-scalemachinelearning. InOSDI,volume16, pp. 265-283.
3. Breiman, L. (1996). Bagging predictors. Machine Learning, pp. 123–140.
4. ChaurasiaV., & PalS. (2013). Data Mining Approach to Detect Heart Dieses. International Journal of Ad-vanced Computer Science and Information Technology (IJACSIT). .
5. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). Imagenet: A largescale hierarchical image database. Computer Vision and Pattern Recognition (pp. 248-255). IEEE Conference.
6. EitelFD. Kleine, S.B.Kleine,. (1985). Pathogenesis, Clinical Aspects and Development of Fatty Liver. Dentsche Zeitschrift fur Verdauungs-und Stoffwechselkrankheiten, 頁 111-116.
7. Fusamoto H., S. K. (1991). Obesity and Liver Disease: Evaluation of Fatty Infiltration of the Liver Using Ultrasonic Attenuation. Journal of Nutritional Science & Vitaminology, pp. S71-77.
8. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning for Image Recognition. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (pp. 770-778).
9. Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2012). Improving neural networks by preventing co-adaptation of feature detectors. doi:arXivpreprintarXiv:1207.0580
10. HouriganLF, G. M. (1999). Fibrosis in chronic hepatitis C correlates significantly with body mass index and steatosis. Hepatology., pp. 1328-1330.
11. Karen SimonyanZissermanAndrew. (2014). Very deep convolutional networks for large-scaleimagerecognition. arXivpreprintarXiv, 頁 1409-1556.
12. Kawai N.T., Kawai K.Kawai. (1995). Ultrasonic and Laboratory Studies on Fatty Liver in White-Collar Workers. Japanese Journal of Gastroenterology(92), 頁 1058-1068.
13. Krizhevsky Alex, S. I. (2012). Imagenet classification with deep convolutional neural networks. Advances in neural information processingsystems, pp. 1097–1105.
14. L. BreimanH. Friedman, R. A. Olshen, C. J. StoneJ. (1984). Classification and Regression Tree. Wadsworth.
15. Li, Guokuan; Luo, Yu; Deng, Wei; Xu, Xiangyang; Liu, Aihua; Song, Enmin. (2008). Computer aided diagnosis of fatty liver ultrasonic images based on support vector machine. 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.
16. Mendler MH.P., Le Sidaner A., Lavoine E., Labrousse F., Sautereau D., Pillegand B.Bouillet. (1998). Dual - Energy CT in the Diagnosis and Quantification of Fatty Liver:Limited Clinical Value in Comparison to Ultrasound scan and Single - energy CT. Journal of Hepatology, (頁 785-794).
17. M-H, H., J-C, Y., C-K, N., C-C, Y., Y-H, Y., & S-K, Y. (2006). Prevalence and risk factors of nonalcoholic fatty liver disease in an adult population of Taiwan: metabolic significance of nonalcoholic fatty liver disease in nonobese adults. Journal of clinical gastroenterology, pp. 745-752.
18. NasrallahWills, CE.jr. Galambos, JT.SM. (1981). Hepatic Morphology in Obesity. Digestive Diseases and Sciences, 頁 325-327.
19. R. Girshick, J. D. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 580-587.
20. Shin HC., R. H. (2016). Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE transactions on medical imaging, vol. 35, pp. 1285-1298.
21. Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scaleimagerecognition. arXivpreprintarXiv:, pp. 1409-1556.
22. Targher G;Day CP; Bonora E. (2010). Risk of Cardiovascular Disease in Patients with Nonalcoholic Fatty Liver Disease. New England Journal of Medicine, 363(14), pp. 1341-1350.
23. Tolman, K., & Dalpiaz, A. (2007). Treatment of non-alcoholic fatty liver disease. Ther Clin Risk Manag, 1153-1163.
24. Ueno, T. S. (1997). Therapeutic Effects of Restricted Diet and Exercise inObese Patients with Fatty Liver. Journal of Hepatology, (pp. 103-107).
25. Vapnik V., C. C. (1995). Support-vector networks. Machine learning, vol. 20, pp. 273-297.
26. Verrijken, A. S. (2011). European Endocrinology, pp. 96-103.
27. Y. Bar, I. D. (2015). Deep learning with non-medical training used for chest pathology identification. Proc. SPIE, p. 94140.
28. Yajima Y., O. K. (1983). Ultrasonographical Diagnosis of Fatty Liver:Significance of the Liver - Kidney Contrast. Tohoku Journal of Experimental Medicine, (pp. 43-50).
29. Yangqing JiaShelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick, Sergio Guadarrama, Trevor DarrellEvan. (2004). Caffe: Convolutional Architecture for Fast Feature Embedding.
30. Zhang Xiangyu, Z. J. (2015). Accelerating Very Deep Convolutional Networks for Classification and Detection. arXiv, pp. 4114-4229.
31. 王朝欣羅海韻,梁錦華,王鐘貴. (1985). 腹部超音波的脂肪肝診斷. 中華民國消化系醫學會第十五次學術演講年會論文集, (頁 12-13).
32. 朱娟秀. (1997). 脂肪肝之病理學. 中華民國內科醫學會八十六年學術演講會論文集, (頁 30-32).
33. 陳信成黃志富,王良彥,張文宇. (1997). 脂肪肝成因與臨床鑑別診斷. 中華民國內科醫學會八十六年學術演講會論文集, (頁 26-28).
34. 廖運範陳東榮. (1992). 台灣肝臟病系列,四十三、脂肪肝. 當代醫學,第十九卷第七期, 568-572.
35. 劉正典. (1997). 酒精性脂肪肝. 中華民國內科醫學會八十六年學術演講會論文集, (p. 33).
36. 衛生福利部. (2019年3月2日). 106年國人死因統計結果. 擷取自 衛生福利部: https://www.mohw.gov.tw/cp-16-41794-1.html
37. 譚健民吳昭新. (1986). 脂肪肝之超音波影像診斷. 台灣醫誌(85), 45-53.
38. 蘇維文. (2019). 認識脂肪肝. 擷取自 彰化基督教醫院: https://www.cch.org.tw/vmpc/news/news_detail.aspx?oid=3323 |