博碩士論文 106522091 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:43 、訪客IP:18.223.206.84
姓名 劉文誠(Wen-Cheng Liu)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 可用於自動訓練深度學習網路的網頁服務
(A Web Service for Automatic Deep Learning Model Generation)
相關論文
★ 基於虹膜色彩空間的極端學習機的多類型頭痛分類★ 以多分數加權融合方式進行虹膜影像品質檢定
★ 基於深度學習之工業用智慧型機器視覺系統:以文字定位與辨識為例★ 基於深度學習的即時血壓估測演算法
★ 基於深度學習之工業用智慧型機器視覺系統:以焊點品質檢測為例★ 基於pix2pix深度學習模型之條件式虹膜影像生成架構
★ 以核方法化的相關濾波器之物件追蹤方法 實作眼動儀系統★ 雷射都普勒血流原型機之驗證與校正
★ 以生成對抗式網路產生特定目的影像—以虹膜影像為例★ 一種基於Faster R-CNN的快速虹膜切割演算法
★ 運用深度學習、支持向量機及教導學習型最佳化分類糖尿病視網膜病變症狀★ 應用卷積神經網路的虹膜遮罩預估
★ Collaborative Drama-based EFL Learning with Mobile Technology Support in Familiar Context★ 基於深度學習方法之高精確度瞳孔放大片偵測演算法
★ 基於CNN方法之真假人臉識別模型★ 深度學習基礎模型與自監督學習
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著科技的進步,深度學習改變了許多工業的生產方式,例如用於檢測缺陷、辨識物件等。其中位於最核心的網路模型,是演算法的核心,也是經過大數據訓練之後的精華。但是,對於大多數業者來說,如何從零開始訓練出一個可用的模型,是在生產線上導入人工智慧的一大難關。如何快速且簡單的完成一個可用的深度學習模型,就成了一個大多數非資工領域的作業人員想要了解的議題。
通常要訓練一個準確度高的深度學習模型,除了需要大量的資料外,也需要複雜的網路架構,並經過無數次的微調後,才能完成。資料的取得對於產線作業人員而言相對容易,網路架構則需要花時間了解細節,並不是一時半刻可以完成的,也使得入門的門檻相對提高許多,不利於各類工廠進行產業升級。
本研究結合了深度模型套件Keras及客戶端與伺服器端的網頁語言,提供一個可以快速訓練的深度學習模型的網頁端人工智慧系統。本系統可以讓使用者透過圖形介面設定參數並上傳訓練資料,讓非資工領域的使用者不需要花太多時間了解深度學習的細節也能快速訓練出所需的模型。
摘要(英) As technology advances, deep learning has changed the way many industries produce, such as detecting defects, identifying objects, and so on. The core network model is the core of the algorithm and the essence of the training after big data. However, for most operators, how to train a usable model from scratch is a major difficulty in introducing artificial intelligence on the production line. How to quickly and easily complete a usable deep learning model becomes an issue that most non-employed workers want to know.
Usually, training a highly accurate deep learning model requires a complex network architecture in addition to a large amount of data, and can be completed after numerous fine-tuning. The acquisition of data is relatively easy for the production line operators, and the network architecture needs to take time to understand the details. It is not completed in a moment and a half, and the threshold for entry is relatively improved, which is not conducive to industrial upgrading of various factories.
This study combines the deep learning model suite Keras with the web language of the client and server side to provide a web-based artificial intelligence system that can quickly train deep learning models. The system allows users to set parameters and upload training data through the graphical interface, so that users in non-employed fields can quickly train the required models without spending too much time on the details of deep learning.
關鍵字(中) ★ 深度學習
★ 程式碼生成
★ 網頁應用程式
關鍵字(英)
論文目次 中文摘要 i
ABSTRACT ii
誌謝 iv
目錄 v
圖目錄 ix
表目錄 xii
一、 緒論 1
1-1 前言 1
1-2 研究目的 1
1-3 研究成果 2
1-4 論文架構 2
二、 研究背景及文獻探討 3
2-1 網頁前端 3
2-1-1 HTML 3
2-1-2 PHP 3
2-1-3 JavaScript 3
2-1-4 Apache HTTP伺服器 3
2-2 訓練後端 4
2-2-1 NASNet 4
2-2-2 DenseNet 5
2-2-3 Xception 6
2-2-4 ResNet 7
2-3 背景探討 8
2-3-1 視覺化程式編輯 8
2-3-2 利用模塊生成網路 9
2-3-3 動態網頁生成 10
2-3-4 基於流的訓練系統 11
三、 方法說明 12
3-1 系統架構 12
3-2 模塊設定 12
3-2-1 卷積層 13
3-2-2 池化層 14
3-2-3 扁平層 15
3-2-4 全連接層 16
3-2-5 Dropout層 16
3-3 資料傳遞 17
3-4 網路架構生成 19
3-5 深度學習網路訓練 22
3-6 測試及取得模型 23
四、 實驗 25
4-1 實驗配備 25
4-2 系統可靠性驗證 25
4-3 實驗資料集介紹 27
4-3-1 MNIST手寫資料集 27
4-3-2 工業焊點資料集 27
4-3-3 一維與二維條碼資料集 28
4-4 實驗結果 29
4-4-1 MNIST手寫資料集 29
4-4-2 工業焊點資料集 30
4-4-3 一維與二維條碼資料集 31
4-5 實驗驗證 32
4-6 實驗結論 33
4-7 使用者分析 33
4-7-1 本科系學生 33
4-7-2 非本科系學生 34
五、 結論與未來展望 36
5-1 結論 36
5-2 未來展望 36
六、 參考文獻 37
參考文獻 [1] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
[2] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le. Learning transferable architectures for scalable image recognition. arXiv: 1707.07012, 2017.
[3] B. Zoph and Q. V. Le. Neural architecture search with reinforcement learning. In International Conference on Learning Representations, 2017.
[4] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1–9, 2015.
[5] G. Huang, Z. Liu, K. Q. Weinberger, and L. Maaten. Densely connected convolutional networks. In CVPR, 2017.
[6] F. Chollet. Xception: Deep learning with depthwise separable convolutions. arXiv preprint arXiv:1610.02357v2, 2016
[7] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the inception architecture for computer vision. arXiv preprint arXiv:1512.00567, 2015.
[8] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of CVPR, pages 770–778, 2016.
[9] Yi-Hsuan Huang. A Web Application Generator for Embedded Devices with HTML5 and JavaScript. Master Thesis, National Taiwan University, 2015.
[10] Wolber, David. "App inventor and real-world motivation." Proceedings of the 42nd ACM technical symposium on Computer science education. ACM, 2011.
[11] Blockly. Retrieved June 16, 2019, from https://developers.google.com/blockly/
[12] Chared, Zeev, and Shmuel S. Tyszberowicz. "Projective Template-Based Code Generation." CAiSE Forum. 2013.
[13] Morrison, J. Paul. Flow-Based Programming: A new approach to application development. CreateSpace, 2010.
[14] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradientbased learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.
[15] the Stanford CS class CS231n: Convolutional Neural Networks for Visual Recognition. Retrieved June 16, 2019, from http://cs231n.github.io/convolutional-networks/
[16] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research, pages 1929–1958, 2014
[17] JSON. Retrieved June 16, 2019, from https://www.json.org/
[18] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., and Zheng, X. Tensorflow: A system for large-scale machine learning. arXiv:1605.08695, 2016.
[19] Francois Chollet et al. Keras. Retrieved June 16, 2019, from https://keras.io/
[20] A. Krizhevsky. Learning multiple layers of features from tiny images. Tech Report, 2009.
[21] The CIFAR-10 dataset. Retrieved June 16, 2019, from https://www.cs.toronto.edu/~kriz/cifar.html
[22] Spyder Website. Retrieved June 16, 2019, from https://www.spyder-ide.org/
[23] Node.js. Retrieved June 16, 2019, from https://nodejs.org/

[24] Mohorovicic, S. "Implementing responsive web design for enhanced web presence." Information & Communication Technology Electronics & Microelectronics (MIPRO), 2013 36th International Convention on. IEEE, 2013.
[25] Myers, Brad A. "Taxonomies of visual programming and program visualization." Journal of Visual Languages & Computing 1.1 (1990): 97-123.
[26] Weigert, Thomas, et al. "Automated code generation for industrial-strength systems." Computer Software and Applications, 2008. COMPSAC′′08. 32nd Annual IEEE International. IEEE, 2008.
指導教授 栗永徽 審核日期 2019-8-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明