參考文獻 |
[1] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
[2] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le. Learning transferable architectures for scalable image recognition. arXiv: 1707.07012, 2017.
[3] B. Zoph and Q. V. Le. Neural architecture search with reinforcement learning. In International Conference on Learning Representations, 2017.
[4] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1–9, 2015.
[5] G. Huang, Z. Liu, K. Q. Weinberger, and L. Maaten. Densely connected convolutional networks. In CVPR, 2017.
[6] F. Chollet. Xception: Deep learning with depthwise separable convolutions. arXiv preprint arXiv:1610.02357v2, 2016
[7] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the inception architecture for computer vision. arXiv preprint arXiv:1512.00567, 2015.
[8] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of CVPR, pages 770–778, 2016.
[9] Yi-Hsuan Huang. A Web Application Generator for Embedded Devices with HTML5 and JavaScript. Master Thesis, National Taiwan University, 2015.
[10] Wolber, David. "App inventor and real-world motivation." Proceedings of the 42nd ACM technical symposium on Computer science education. ACM, 2011.
[11] Blockly. Retrieved June 16, 2019, from https://developers.google.com/blockly/
[12] Chared, Zeev, and Shmuel S. Tyszberowicz. "Projective Template-Based Code Generation." CAiSE Forum. 2013.
[13] Morrison, J. Paul. Flow-Based Programming: A new approach to application development. CreateSpace, 2010.
[14] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradientbased learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.
[15] the Stanford CS class CS231n: Convolutional Neural Networks for Visual Recognition. Retrieved June 16, 2019, from http://cs231n.github.io/convolutional-networks/
[16] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research, pages 1929–1958, 2014
[17] JSON. Retrieved June 16, 2019, from https://www.json.org/
[18] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., and Zheng, X. Tensorflow: A system for large-scale machine learning. arXiv:1605.08695, 2016.
[19] Francois Chollet et al. Keras. Retrieved June 16, 2019, from https://keras.io/
[20] A. Krizhevsky. Learning multiple layers of features from tiny images. Tech Report, 2009.
[21] The CIFAR-10 dataset. Retrieved June 16, 2019, from https://www.cs.toronto.edu/~kriz/cifar.html
[22] Spyder Website. Retrieved June 16, 2019, from https://www.spyder-ide.org/
[23] Node.js. Retrieved June 16, 2019, from https://nodejs.org/
[24] Mohorovicic, S. "Implementing responsive web design for enhanced web presence." Information & Communication Technology Electronics & Microelectronics (MIPRO), 2013 36th International Convention on. IEEE, 2013.
[25] Myers, Brad A. "Taxonomies of visual programming and program visualization." Journal of Visual Languages & Computing 1.1 (1990): 97-123.
[26] Weigert, Thomas, et al. "Automated code generation for industrial-strength systems." Computer Software and Applications, 2008. COMPSAC′′08. 32nd Annual IEEE International. IEEE, 2008.
|