參考文獻 |
Ba, J. L., Kiros, J. R., & Hinton, G. E. (2016). Layer Normalization. ArXiv:1607.06450 [Cs, Stat]. Retrieved from http://arxiv.org/abs/1607.06450
Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural Machine Translation by Jointly Learning to Align and Translate. Proceedings of the 2015 International Conference on Learning Representations (ICLR). Retrieved from http://arxiv.org/abs/1409.0473
Cao, Z., Wei, F., Dong, L., Li, S., & Zhou, M. (n.d.). Ranking with Recursive Neural Networks and Its Application to Multi-document Summarization. Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, 7.
Chen, M. X., Firat, O., Bapna, A., Johnson, M., Macherey, W., Foster, G., … Hughes, M. (2018). The Best of Both Worlds: Combining Recent Advances in Neural Machine Translation. Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 76–86. Retrieved from https://www.aclweb.org/anthology/P18-1008
Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 1724–1734. https://doi.org/10.3115/v1/D14-1179
Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019, June). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. 4171–4186. Retrieved from https://aclweb.org/anthology/papers/N/N19/N19-1423/
Elman, J. L. (1990). Finding Structure in Time. Cognitive Science, 14(2), 179–211. https://doi.org/10.1207/s15516709cog1402_1
Gehring, J., Auli, M., Grangier, D., Yarats, D., & Dauphin, Y. N. (2017). Convolutional Sequence to Sequence Learning. Proceedings of the 34th International Conference on Machine Learning - Volume 70, 1243–1252. Retrieved from http://dl.acm.org/citation.cfm?id=3305381.3305510
Gong, Y., & Liu, X. (2001). Generic text summarization using relevance measure and latent semantic analysis. Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval - SIGIR ’01, 19–25. https://doi.org/10.1145/383952.383955
Graves, A., & Jaitly, N. (n.d.). Towards End-to-End Speech Recognitionwith Recurrent Neural Networks. Proceedings of the 31 St International Conference on Machine Learning, 9.
Gu, J., Lu, Z., Li, H., & Li, V. O. K. (2016). Incorporating Copying Mechanism in Sequence-to-Sequence Learning. Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 1631–1640. https://doi.org/10.18653/v1/P16-1154
Hassan, H., Aue, A., Chen, C., Chowdhary, V., Clark, J., Federmann, C., … Zhou, M. (2018). Achieving Human Parity on Automatic Chinese to English News Translation. ArXiv:1803.05567 [Cs]. Retrieved from http://arxiv.org/abs/1803.05567
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770–778. https://doi.org/10.1109/CVPR.2016.90
Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735
Jean, S., Cho, K., Memisevic, R., & Bengio, Y. (2015). On Using Very Large Target Vocabulary for Neural Machine Translation. Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), 1–10. https://doi.org/10.3115/v1/P15-1001
Kalchbrenner, N., Grefenstette, E., & Blunsom, P. (2014). A Convolutional Neural Network for Modelling Sentences. Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 655–665. https://doi.org/10.3115/v1/P14-1062
Kim, B., Kim, H., & Kim, G. (2019). Abstractive Summarization of Reddit Posts with Multi-level Memory Networks. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), 2519–2531. Retrieved from https://www.aclweb.org/anthology/N19-1260
Kim, Y. (2014). Convolutional Neural Networks for Sentence Classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 1746–1751. https://doi.org/10.3115/v1/D14-1181
Lei, T., Zhang, Y., Wang, S. I., Dai, H., & Artzi, Y. (2018). Simple Recurrent Units for Highly Parallelizable Recurrence. Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, 4470–4481. Retrieved from https://www.aclweb.org/anthology/D18-1477
Loper, E., & Bird, S. (2002). NLTK: The Natural Language Toolkit. In Proceedings of the ACL-02 Workshop on Effective Tools and Methodologies for Teaching Natural Language Processing and Computational Linguistics. Retrieved from http://arxiv.org/abs/cs/0205028
Mihalcea, R., & Tarau, P. (2004). TextRank: Bringing Order into Text. Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing, 404–411. Retrieved from https://www.aclweb.org/anthology/W04-3252
Nallapati, R., Zhou, B., dos Santos, C., Gulcehre, C., & Xiang, B. (2016). Abstractive Text Summarization using Sequence-to-sequence RNNs and Beyond. Proceedings of The 20th SIGNLL Conference on Computational Natural Language Learning, 280–290. https://doi.org/10.18653/v1/K16-1028
See, A., Liu, P. J., & Manning, C. D. (2017, July). Get To The Point: Summarization with Pointer-Generator Networks. 1073–1083. https://doi.org/10.18653/v1/P17-1099
Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to Sequence Learning with Neural Networks. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, & K. Q. Weinberger (Eds.), Advances in Neural Information Processing Systems 27 (pp. 3104–3112). Retrieved from http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
Vaswani, A., Bengio, S., Brevdo, E., Chollet, F., Gomez, A. N., Gouws, S., … Uszkoreit, J. (2018). Tensor2Tensor for Neural Machine Translation. ArXiv:1803.07416 [Cs, Stat]. Retrieved from http://arxiv.org/abs/1803.07416
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., … Polosukhin, I. (2017). Attention is All you Need. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, & R. Garnett (Eds.), Advances in Neural Information Processing Systems 30 (pp. 5998–6008). Retrieved from http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
Vosoughi, S., Vijayaraghavan, P., & Roy, D. (2016). Tweet2Vec: Learning Tweet Embeddings Using Character-level CNN-LSTM Encoder-Decoder. Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval, 1041–1044. https://doi.org/10.1145/2911451.2914762
Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., … Dean, J. (2016). Google’s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation. ArXiv:1609.08144 [Cs]. Retrieved from http://arxiv.org/abs/1609.08144
Zhang, A., Pueyo, L. G., Wendt, J. B., Najork, M., & Broder, A. (2017). Email Category Prediction. Companion Proc. of the 26th International World Wide Web Conference, 495–503.
Zhang, Y., Er, M. J., Zhao, R., & Pratama, M. (2017). Multiview Convolutional Neural Networks for Multidocument Extractive Summarization. IEEE Transactions on Cybernetics, 47(10), 3230–3242. https://doi.org/10.1109/TCYB.2016.2628402 |