參考文獻 |
[1]
B. Beltz, “100+ Car Accident Statistics for 2019,” Safer America, 2018. [Online]. Available: https://safer-america.com/car-accident-statistics
[2]
National Highway Police Bureau, “Traffic Accident MVKT,” Ministry of Interior, Taiwan, ROC, 2019. [Online]. Available: https://www.hpb.gov.tw/p/412-1000-97.php
[3]
Open Data x Open Taoyuan, Taoyuan City Goverment, Taiwan, ROC. (2019) [Online]. Available: http://data.tycg.gov.tw/opendata, Accessed on: Jun. 12, 2019.
[4]
G. Fowler, “Most Common Car Insurance Repair Scams and What You Can Do To Avoid Being a Victim,” AutoInsureSavings, 2019. [Online]. Available: https://www.autoinsuresavings.org/common-car-insurance-repair-scams
[5]
“By the numbers: fraud statistics,” Coalition Against Insurance Fraud, 2019. [Online]. Available: https://www.insurancefraud.org/statistics.htm
[6]
“Staged Crash,” Cathay Inssurance Report, 2015. [Online]. Available: https://carrisk.cathay-ins.com.tw/dr_z_dt.asp?pkey=96
[7]
S. Gillani, F. Shahzad, A. Qayyum, and R. Mehmood, “A survey on security in vehicular ad hoc networks,” in Communication Technologies for Vehicles (Nets4Cars/Nets4Trains 2013), Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2013, vol. 7865, pp. 59-74. doi: 10.1007/978-3-642-37974-1_5.
[8]
B. Mokhtar and M. Azab, “Survey on Security Issues in Vehicular Ad Hoc Networks,” Alexandria Engineering Journal, vol. 54 (4), pp. 1115-1126, Dec. 2015. doi: 10.1016/j.aej.2015.07.011.
[9]
K. Wüst and A. Gervais, “Do you need a Blockchain?,” in Proc. IEEE Crypto Valley Conference on Blockchain Technology (CVCBT), Zug, Switzerland, 2018. pp. 45-54. doi: 10.1109/CVCBT.2018.00011.
[10]
D. Puthal, N. Malik, S. P. Mohanty, E. Kougianos, and C. Yang, “The Blockchain as a Decentralized Security Framework,” in IEEE Consumer Electronics Magazine, vol. 7, no. 2, pp. 18-21, Mar. 2018. doi: 10.1109/MCE.2017.2776459.
[11]
Intelligent Transport Systems (ITS); Users and Applications Requirements; Part 2: Applications and Facilities Layer Common Data Dictionary, document ETSI TS 102 894-2 V1.3.1, Aug. 2018.
[12]
Dedicated Short Range Communications (DSRC) Message Set Dictionary, document SAE J2735, Mar. 2016.
[13]
S. Husain, A. Kunz, A. Prasad, E. Pateromichelakis, K. Samdanis, and J. Song, “The Road to 5G V2X: Ultra-High Reliable Communications,” in Proc. 2018 IEEE Conference on Standards for Communications and Networking (CSCN), Paris, 2018, pp. 1-6. doi: 10.1109/CSCN.2018.8581819.
[14]
Y.-T. Yang and L.-D. Chou, “Position-based adaptive broadcast for inter-vehicle communications,” in Proc. IEEE Int. Conf. Commun. Workshops (ICC Workshops), Beijing, May 2008, pp. 410-414. doi: 10.1109/ICCW.2008.83.
[15]
U. Lee and M. Gerla, “A survey of urban vehicular sensing platforms,” Computer Networks, vol 54 (4), pp. 527-554, Mar. 2010, doi: 10.1016/j.comnet.2009.07.011.
[16]
T. Umedu, K. Isu, T. Higashino, and C.-K. Toh, “An intervehicular-communication protocol for distributed detection of dangerous vehicles,” IEEE Transactions on Vehicular Technology, vol. 59, no. 2, pp. 627-637, Feb. 2010. doi: 10.1109/TVT.2009.2035041.
[17]
S. Abdelhamid, H.S. Hassanein, and G. Takahara, “Vehicle as a Mobile Sensor,” Procedia Computer Science, vol. 34, pp. 286-295, 2014. doi: j.procs.2014.07.025.
[18]
J. Guerrero-Ibañez, S. Zeadally, and J. Contreras-Castillo, “Sensor Technologies for Intelligent Transportation Systems,” Sensors 2018, vol. 4, pp. 1212, Apr. 2018. doi: 10.3390/s18041212.
[19]
Intelligent Transport Systems (ITS); Security; Pre-standardization study on pseudonym change management, document ETSI TR 103 415 V1.1.1, 2018.
[20]
M. Raya and J.-P. Hubaux, “Securing Vehicular Ad Hoc Networks,” Journal of Computer Security, vol. 15, no. 1, pp. 39-68, Jan. 2007. doi: 10.3233/JCS-2007-15103.
[21]
X. Yao, X. Zhang, H. Ning, and P. Li, “Using trust model to ensure reliable data acquisition in VANETs,”, Ad Hoc Networks, vol. 55, pp. 107-118, 2017. doi: 10.1016/j.adhoc.2016.10.011.
[22]
N.-W. Lo and H.-C. Tsai, “A Reputation System for Traffic Safety Event on Vehicular Ad Hoc Networks,” EURASIP Journal on Wireless Communications and Networking, vol. 2009, no. 9, 2009. doi: 10.1155/2009/125348.
[23]
F. G. Mármol and G. M. Pérez, “TRIP, a trust and reputation infrastructure-based dissertation for vehicular ad hoc networks,” Journal of Network Computer Applications, vol. 35, pp. 934-941, 2012. doi: 10.1016/j.jnca.2011.03.028.
[24]
M. Raya, P. Papadimitratos, V. D. Gligor, and J.-P. Hubaux, “On Data-level Trust Establishment in Ephemeral Ad Hoc Networks,” in Proc. 27th IEEE INFOCOM, Phoenix, AZ, 2008, pp. 1238-1246. doi: 10.1109/INFOCOM.2008.180.
[25]
W. Li and H. Song, “ART: An attack-resistant trust management scheme for securing vehicular ad hoc networks,” IEEE Transactions on Intelligent Transportation System, vol. 17, no. 4, pp. 960-969, Apr. 2016. doi: 10.1109/TITS.2015.2494017.
[26]
Uber. Uber Technology Inc., 2009. [Online]. Available: https://www.uber.com
[27]
Google Maps. Google, 2005. [Online]. Available: https://maps.google.com
[28]
Motor Vehicle Driver Information Service, Motor Vehicles Office, Taiwan, 2013. [Online]. Available: https://www.mvdis.gov.tw/m3-emv-eng/
[29]
K. Januja, T. M. Sushma, M. Bharathi, and K. H. Arun, “A Survey on VANET Technologies”, International Journal of Computer Applications, vol. 121, no. 18, 2015. doi: 10.5120/21637-4965.
[30]
S. Kumar, L. Shi, N. Ahmed, S. Gil, D. Katabi, and D. Rus, “CarSpeak: a content-centric network for autonomous driving,” in Proc. ACM SIGCOMM Computer Communication Review - Special (SIGCOMM’12), New York, NY, USA, vol. 4 (4), Oct. 2012, pp. 259-270. doi: 10.1145/2377677.2377
724.
[31]
A. Hussein, F. García, J. M. Armingol, and C. Olaverri-Monreal, “P2V and V2P communication for Pedestrian warning on the basis of Autonomous Vehicles,” in Proc. 19th International Conference on Intelligent Transportation Systems (ITSC), Rio de Janeiro, 2016, pp. 2034-2039. doi: 10.1109/ITSC.2016.7795885.
[32]
F.-H. Tseng, J.-H. Hsueh, C.-W. Tseng, Y.-T. Yang, H.-C. Chao, and L.-D. Chou, “Congestion prediction with big data for real-time highway traffic,” IEEE Access, vol. 6, pp. 57311-57323, 2018. doi: 10.1109/ACCESS.2018.2873569.
[33]
M. Hasan, M. A. Orgun, and R. Schwitter, “A survey on real-time event detection from the Twitter data stream,” Journal of Information Science, vol. 44(4), pp. 443-463, 2018. doi: 10.1177/0165551517698564.
[34]
Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applications; Part 2: Specification of Cooperative Awareness Basic Service, ETSI EN 302 637-2 V1.4.0, 2018.
[35]
Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applications; Part 3: Specifications of Decentralized Environmental Notification Basic Service, ETSI EN 302 637-3 V1.2.1, 2014.
[36]
J. Santa, F. Pereñíguez, A. Moragón, and A. F. Skarmeta, “Experimental evaluation of CAM and DENM messaging services in vehicular communications,” Transportation Research Part C: Emerging Technologies, vol. 46, pp. 98-120, Sep. 2014. doi: 10.1016/j.trc.2014.05.006.
[37]
G. Araniti, C. Campolo, M. Condoluci, A. Iera, and A. Molinaro, “LTE for vehicular networking: A survey,” in IEEE Commun. Magazine, vol. 51, pp. 148-157, 2013. doi: 10.1109/MCOM.2013.6515060.
[38]
L. Zhang, D. Gao, C.H. Foh, D. Yang, and S. Gao, “A Survey of Abnormal Traffic Information Detection and Transmission Mechanisms in VSNs,” International Journal of Distributed Sensor Networks, May 2014. doi: 10.1155/2014/582761.
[39]
W. Zhu and M. Barth, “Vehicle trajectory-based road type and congestion recognition using wavelet analysis,” in: Proc. IEEE Intelligent Transportation Systems Conference, ITSC’06, Paris, France, 2006, pp. 879-884. doi: 10.1109/ITSC.2006.1706855.
[40]
S. Vaqar and O. Basir, “Traffic pattern detection in a partially deployed vehicular ad hoc network of vehicles,” IEEE Wireless Communications, vol. 16 (6), pp. 40-46, 2009. doi: 10.1109/MWC.2009.5361177.
[41]
K. Tawara and N. Mukai, “Traffic signal control by using traffic congestion prediction based on Pheromone model,” in: Proc. IEEE Tools with Artificial Intelligence, Vol. 1, ICTAI’2010, Arras, France, 2010, pp. 27-30. doi: 10.1109/ICTAI.2010.13.
[42]
G. Jiang, S. Niu, A. Chang, Z. Meng, and C. Zhang, “Automatic traffic congestion identification method of expressway based on gain amplifier theory”, in: Proc. Advanced Computer Control, Vol. 2, ICACC’10, Shenyang, China, 2010, pp. 648-651. doi: 10.1109/ICACC.2010.5486725.
[43]
B. Persaud, F. Hall, and L. Hall, “Congestion identification aspects of the McMaster incident detection algorithm,” Transportation Research Record, 1287, pp. 167-175, 1990.
[44]
J. E. Bresenham, “Algorithm for computer control of a digital plotter,” IBM Systems Journal, vol. 4, no. 1, pp. 25-30, 1965. doi: 10.1147/sj.41.0025.
[45]
P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time Analysis of the Multiarmed Bandit Problem,” in Machine Learning, Kluwer Academic Publishers, 2002, vol. 47, pp.235-256. doi: 10.1023/A:1013689704352.
[46]
E. Nathanail, P. Kouros, and P. Kopelias, “Traffic volume responsive incident detection,” Transportation Research Procedia, vol. 25, pp. 1755-1768, 2017. doi: 10.1016/j.trpro.2017.05.136.
[47]
S. Krishnan and M. Chen, “Identifying Tweets with Fake News,” in Proc. 2018 IEEE International Conference on Information Reuse and Integration (IRI), Salt Lake City, UT, USA, 2018, pp. 460-464. doi: 10.1109/IRI.2018.00073.
[48]
M. L. Della Vedova, E. Tacchini, S. Moret, G. Ballarin, M. DiPierro, and L. de Alfaro, “Automatic Online Fake News Detection Combining Content and Social Signals,” in Proc. 2018 22nd Conference of Open Innovations Association (FRUCT), Jyvaskyla, Finland, 2018, pp. 272-279. doi: 10.23919/FRUCT.2018.8468301.
[49]
L. Zhang, D. Gao, W. Zhao, and H.-C. Chao, “A multilevel information fusion approach for road congestion detection in VANETs,” Mathematical and Computer Modelling, vol. 58, no.5-6, pp. 1206-1221, Sep. 2013. doi: 10.1016/j.mcm.2013.02.004.
[50]
R. Weil, J. Wootton, and A. Garcła-Ortiz, “Traffic incident detection: sensors and algorithms,” Mathematical and Computer Modelling, vol. 27 (9-11), pp. 257-291, 1998. doi: 10.1016/S0895-7177(98)00064-8.
[51]
H.-C. Hsiao, A. Studer, R. Dubey, E. Shi, and A. Perrig, “Efficient and secure threshold-based event validation for VANETs,” in Proc. ACM conference on Wireless network security (WiSec), Hamburg, Germany, 2011, pp. 163-174. doi: 10.1145/1998412.1998440.
[52]
P. Clifford and I. A. Cosma, “A Statistical Analysis of Probabilistic Counting Algorithms." Scandinavian Journal of Statistics, vol. 39, no. 1, pp. 1-14, Mar. 2012. [Online]. Available: http://www.jstor.org/stable/41411154
[53]
H. Bloom, “Space/time trade-offs in hash coding with allowable errors,” Communications of the ACM, vol. 13, no. 7, pp. 442-426, Jul. 1970. doi: 10.1145/362686.362692.
[54]
G. Cormode and S. Muthukrishnan, “An improved data stream summary: the count-min sketch and its applications,” Journal of Algorithms, vol. 55, no.1, pp. 58-75, Apr. 2005. doi: 10.1016/j.jalgor.2003.12.001.
[55]
N. Alon, Y. Matias, and M. Szegedy, “The space complexity of approximating the frequency moments,” Journal of Computer System Sciences, vol. 58(1), pp. 137-147, 1999. doi: 10.1006/jcss.1997.1545.
[56]
P. Flajolet and G. N. Martin, “Probabilistic counting algorithms for data base applications,” Journal of Computer and System Sciences, vol. 31, no. 2, pp. 182-209, 1985. doi: 10.1016/0022-0000(85)90041-8.
[57]
Z. Bar-Yossef, T. S. Jayram, R. Kumar, D. Sivakumar, and L. Trevisan, “Counting Distinct Elements in a Data Stream,” in. Randomization and Approximation Techniques in Computer Science (RANDOM 2002), Lecture Notes in Computer Science, vol. 2483. Springer, Berlin, Heidelberg, 2002, pp. 1-10. doi: 10.1007/3-540-45726-7_1.
[58]
W. Guo, Z. Wang, W. Wang, and H. Bubb, “Traffic Incident Automatic Detection Algorithms by Using Loop Detector in Urban Roads,” Recent Patents on Computer Science, vol. 8, no. 1, pp. 41-48, 2015. doi: 10.2174/2213275907666141010214241.
[59]
B. Ghosh, B. Basu, and M. O’Mahony, “Time-Series Modeling For Forecasting Vehicular Traffic Flow in Dublin,” in Proc. 84th Transportation Research Board Annual Meeting, National Research Council, Washington, DC, USA, pp. 05-0464-05-0480, 2015.
[60]
M. Tan, S.-C. Wong, J. Xu, Z. Guan, and P. Zhang, “An Aggregation Approach to Short-Term Traffic Flow Prediction,” IEEE Transactions on Intelligent Transportation Systems, vol. 10, no. 1, pp. 60-69, Mar. 2009. doi: 10.1109/TITS.2008.2011693.
[61]
K. Kumar and V. K. Jain, “Autoregressive integrated moving averages (ARIMA) modelling of a traffic noise time series,” Applied Acoustics, vol. 58, no. 3, pp. 283-294, Nov. 1999. doi: S0003-682X(98)00078-4.
[62]
S.-V. Kumar and L. Vanajakshi, “Short-term traffic flow prediction using seasonal ARIMA model with limited input data,” in European Transport Research Review, Springer, Berlin, Heidelberg, 2015. doi: 10.1007/s12544-015-0170-8.
[63]
N. K. Ahmed, A. F. Atiya, N. El-Gayar, and H. El-Shishiny, “An Empirical Comparison of Machine Learning Models for Time Series Forecasting,” Econometric Reviews, vol. 29, no.5-6, pp. 594-621, Aug. 2010. doi: 10.1080/07474938.2010.481556.
[64]
G. Bontempi, S. B. Taieb, and Y.-A. L. Borgne, “Machine Learning Strategies for Time Series Forecasting,” in Business Intelligence, eBISS 2012. Lecture Notes in Business Information Processing, vol. 138, Springer, Berlin, Heidelberg, 2012, pp. 62-77. doi: 10.1007/978-3-642-36318-4_3.
[65]
T. G. Dietterich, “Machine Learning for Sequential Data: A Review,” Structural, Syntactic, and Statistical Pattern Recognition. SSPR /SPR 2002, Lecture Notes in Computer Science, Springer Berlin Heidelberg, vol. 2396, pp. 15-30, Aug. 2002. doi: 10.1007/3-540-70659-3_2.
[66]
Pourya, “Time Series Machine Learning Regression Framework,” Towards Data Science, Apr. 2019. [Online]. Available: https://towardsdatascience.com/time-series-machine-learning-regression-framework-9ea33929009a
[67]
A. Kattan, S. Fatima, and M. Arif, “Time-series event-based prediction: An unsupervised learning framework based on genetic programming,” Information Sciences, vol. 301, pp. 99-123, 2015. doi: 10.1016/j.ins.2014.12.054.
[68]
P.-N. Tan, M. Steinbach, A. Karpatne, and V. Kumar, Introduction to Data Mining (2nd Edition), Pearson, 2018.
[69]
M.-L. Han, J. Lee, A.-R. Kang, S. Kang, J.-K. Park, and H.-K. Kim, “A Statistical-Based Anomaly Detection Method for Connected Cars in Internet of Things Environment,” Internet of Vehicles - Safe and Intelligent Mobility, IOV 2015, Lecture Notes in Computer Science, Springer Cham, vol. 9502, pp. 89-97,. Nov. 2015. doi: 10.1007/978-3-319-27293-1_9.
[70]
K. G. Mehrotra, C. K. Mohan, and H.-M. Huang, “Distance-Based Anomaly Detection Approaches,” Anomaly Detection Principles and Algorithms, Terrorism, Security, and Computation (TESECO). Springer Cham, pp. 33-39, Oct. 2017. doi: 10.1007/978-3-319-67526-8_3.
[71]
J. J. Hopfield, “Neural networks and physical systems with emergent collective computational abilities”. in Proc. National Academy of Science, USA (PANS), vol. 79, pp. 2554-2558, 1982. doi: 10.1073/pnas.79.8.2554.
[72]
D. Ciregan, U. Meier, and J. Schmidhuber, “Multi-column deep neural networks for image classification,” in Porc. 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, Jun. 2012, pp. 3642-3649. doi: 10.1109/CVPR.2012.6248110.
[73]
mxnet, “Handwritten Digit Recognition”, Accessed: Jun. 20, 2019. [Online]. Available: https://mxnet.incubator.apache.org/versions/master/tutorials/python/mnist.html
[74]
M. Sarigül and M. Avci, “Performance comparision of different momentum techniques on deep reinforcement learning,” in Proc. 2017 IEEE International Conference on INnovations in Intelligent SysTems and Applications (INISTA), Gdynia, Poland, 2017, pp. 302-306. doi: 10.1109/INISTA.2017.8001175.
[75]
T. Tieleman and G. Hinton, “Lecture 6.5-RmsProp: Divide the gradient by a running average of its recent magnitude”, COURSERA: Neural Networks for Machine Learning, vol. 4, no. 2, pp. 26-31, Oct. 2012.
[76]
J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning and stochastic optimization”, Journal of Machine Learning Research, vol. 12, pp. 2121-2159, Jul. 2011.
[77]
D. Kingma and J. Ba, “Adam: A method for stochastic optimization”, in Proc. 3rd International Conference for Learning Representations (ICLR 2015), San Diego, USA, May 2015.
[78]
M. Dalto, J. Matuško, and M. Vašak, “Deep neural networks for ultra-short-term wind forecasting,” in Proc. 2015 IEEE International Conference on Industrial Technology (ICIT), Seville, Mar. 2015, pp. 1657-1663. doi: 10.1109/ICIT.2015.7125335.
[79]
I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural networks,” in Proc. 27th International Conference on Neural Information Processing Systems (NIPS′14), vol. 2. MIT Press, Cambridge, MA, USA, pp. 3104-3112.
[80]
X. Ma, Z. Tao, Y. Wang, H. Yu, and Y. Wang, “Long short-term memory neural network for traffic speed prediction using remote microwave sensor data,” Transportation Research Part C: Emerging Technologies, vol. 54, pp. 187-197, 2015. doi: 10.1016/j.trc.2015.03.014.
[81]
K. Cho, B. Merriënboer, D. Bahdanau, and Y. Bengio, “On the Properties of Neural Machine Translation: Encoder-Decoder Approaches,” in Proc. 8th Workshop on Syntax, Semantics and Structure in Statistical Translation (SSST-8), pp. 103-111, Oct. 2014. doi: 10.3115/v1/W14-4012.
[82]
Z. Lv, J. Xu, K. Zheng, H. Yin, P. Zhao, and X. Zhou, “LC-RNN: A Deep Learning Model for Traffic Speed Prediction,” in Proc. 27th International Joint Conference on Artificial Intelligence (IJCAI), 2018. pp. 3470-3476. doi: 10.24963/ijcai.2018/482.
[83]
Colah’s blog. “Understanding LSTM Networks,” 2015. Access: Jun. 20, 2019. [Online]. Available: https://colah.github.io/posts/2015-08-Understanding-LSTMs/
[84]
Intelligent Transport Systems (ITS); Security; ITS communications security architecture and security management, ETSI TS 102 940 V1.3.1, 2018.
[85]
Intelligent Transport Systems (ITS); Security; Security header and certificate formats, ETSI TS 103 097 V1.3.1, 2017.
[86]
Intelligent Transport Systems (ITS); Security; Threat, Vulnerability and Risk Analysis (TVRA), ETSI TR 102 893 V1.2.1, 2017.
[87]
E. Hamida, H. Noura, and W. Znaidi, “Security of Cooperative Intelligent Transport Systems: Standards, Threats Analysis and Cryptographic Countermeasures,” Electronics, vol. 4, no. 3, pp. 380-423, Jul. 2015. doi: 10.3390/electronics4030380.
[88]
Intelligent Transport Systems (ITS); Intelligent Transport Systems (ITS); Security; Security header and certificate formats, ETSI TS 103 097 V1.3.1, Oct. 2017.
[89]
A.-H. Salem, A. Abdel-Hamid, and M.-A. El-Nasr, “The Case for Dynamic Key Distribution for PKI-Based VANETs,” International Journal of Computer Networks & Communications (IJCNC), vol. 6 no. 1, Jan. 2014. doi: 10.5121/ijcnc.2014.6105.
[90]
R.-W. van der Heijden, S. Dietzel, T. Leinmüller, and F. Kargl, “Survey on Misbehavior Detection in Cooperative Intelligent Transportation Systems,” IEEE Communications Surveys & Tutorials, vol. 21, no. 1, pp. 779-811, 2019. doi: 10.1109/COMST.2018.2873088.
[91]
J. Shao, X. Lin, R. Lu, and C. Zuo, “A Threshold Anonymous Authentication Protocol for VANETs,” IEEE Transactions on Vehicular Technology, vol. 65, no. 3, pp. 1711-1720, Mar. 2016. doi: 10.1109/TVT.2015.2405853.
[92]
W. Gao, M. Wang, L. Zhu, and X. Zhang, “Threshold-Based Secure and Privacy-Preserving Message Verification in VANETs,” in Proc. 13th IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), Beijing, 2014, pp. 795-802. doi: 10.1109/TrustCom.2014.105.
[93]
Blockchain companies, “Discover 100+ Startups and Companies Pioneering the Blockchain Technology Industry,” Blockchain Technologies, Accessed: Jun. 15, 2019. [Online]. Available: https://www.blockchaintechnologies.com/companies/
[94]
S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic cash system,” Technology Report, 2008. [Online]. Available: https://bitcoin.org/bitcoin.pdf
[95]
D. Ongaro and J. Ousterhout, “In Search of an Understandable Consenus Algorithm (Extended Version),” in Proc. USENIX conference on Annual Technical Conference (USENIX ATC), USENIX Association, Berkeley, CA, USA, 2014. pp. 305-320. [Online]. Available: https://raft.github.io/raft.pdf
[96]
A. Goranovic, M. Meisel, L. Fotiadis, S. Wilker, A. Treytl, and T. Sauter, “Blockchain applications in microgrids: An overview of current projects and concepts,” in Proc. 43rd Annual Conference of the IEEE Industrial Electronics Society (IECON), 2017. pp. 6153-6158. doi: 10.1109/IECON.2017.82170
69.
[97]
J. Garay and A. Kiayias, “Sok: A consensus taxonomy in the blockchain era,” Cryptology ePrint Archive, Report 2018/754, 2018. [Online]. Available: https://eprint.iacr.org/2018/754.pdf
[98]
P.-K. Sharma, S.-Y. Moon, and J.-H. Park, “Block-VN: A Distributed Blockchain Based Vehicular Network Architecture in Smart City,” Journal of Information Processing Systems, vol. 13, no. 1, pp. 184-195, 2017. doi: 10.3745/JIPS.03.0065.
[99]
Z. Yang, K. Yang, L. Lei, K. Zheng, and V.-C. Leung, Blockchain-Based Decentralized Trust Management in Vehicular Networks,” IEEE Internet of Things Journal, vol. 6, no. 2, pp. 1495-1505, Apr. 2019. doi: 10.1109/JIOT.2018.2836144.
[100]
A. Dorri, M. Steger, S.-S. Kanhere, and R. Jurdak, “BlockChain: A Distributed Solution to Automotive Security and Privacy,” in IEEE Communications Magazine, vol. 55, no. 12, pp. 119-125, Dec. 2017. doi: 10.1109/MCOM.2017.1700879.
[101]
M. Singh and S. Kim, “Blockchain Based Intelligent Vehicle Data Sharing Framework,” arXiv preprint, arXiv:1707.07442, 2017. [Online]. Available: https://arxiv.org/pdf/1708.09721.
[102]
M. Singh and S. Kim, “Trust Bit: Reward-based intelligent vehicle commination using blockchain paper,” in Proc. 2018 IEEE 4th World Forum on Internet of Things (WF-IoT), Singapore, 2018, pp. 62-67. doi: 10.1109/WF-IoT.2018.8355227.
[103]
Y.-T. Yang, L.-D. Chou, C.-W. Tseng, F.-H. Tseng, and C.-C. Liu, “Blockchain-based Traffic Event Validation and Trust Verification for VANETs,” IEEE Access, vol. 7, pp. 30868-30877, Mar. 2019. doi: 10.1109/ACCESS.2019.2903202.
[104]
M. Castro and B. Liskov, “Practical Byzantine fault tolerance and proactive recovery,” ACM Transactions on Computer Systems (TOCS), vol. 20, pp. 398-461, 2002. doi: 10.1145/571637.571640.
[105]
Z. Witherspoon’s blog. “A Hitchhiker’s Guide to Consensus Protocols,” Nov. 2017. Access: Mar. 12, 2019. [Online]. Available: https://hackernoon.com/a-hitchhikers-guide-to-consensus-algorithms-d81aae3eb0e3
[106]
Bitcoin. (2018) [Online]. Available: https://bitcoin.org/, Accessed on: Oct. 16, 2018.
[107]
Ethereum. (2018) [Online]. Available: https://www.ethereum.org/, Accessed on: Oct. 16, 2018.
[108]
Litecoin. (2018) [Online]. Available: https://litecoin.org/, Accessed on: Dec. 20, 2018.
[109]
Dogecoin. (2018) [Online]. Avaliable: https://dogecoin.com/, Accessed on: Dec. 20, 2018.
[110]
G. Hileman and M. Rauchs, “2017 Global Cryptocurrency Benchmarking Study,” Apr. 2017. doi: 10.2139/ssrn.2965436.
[111]
Decred. (2018) [Online]. Available: https://decred.org/, Accessed on: Dec. 25, 2018.
[112]
Ethereum 2.0 Specifications. Github.(2018) [Online]. Available: https://github.com/ethereum/eth2.0-specs, Accessed on: Dec. 14, 2018.
[113]
Peercoin. (2019) [Online]. Available: https://peercoin.net/, Accessed on: May. 25, 2019.
[114]
S. Seang and D. Torre, “Proof of Work and Proof of Stake consensus protocols: a blockchain application for local complementary currencies,” 2018. [Online]. Available: https://gdrescpo-aix.sciencesconf.org/
195470/documen
[115]
POA. (2019) [Online]. Available: https://poa.network/, Accessed on: Apr. 1, 2019.
[116]
Kovan Testnet. (2019) [Online]. Available: https://kovan.etherscan.io/, Accessed on: Apr. 2, 2019.
[117]
Y. Yuan and F.-Y. Wang, “Towards blockchain-based intelligent transportation systems,” in Proc. 19th IEEE Intelligent Transportation Systems (ITSC), Rio de Janeiro, 2016. pp. 2663-2668. doi: 10.1109/ITSC.2016.7795984.
[118]
Steemit. (2019) [Online]. Available: https://steemit.com/, Accessed on: May 12, 2019.
[119]
EOS. (2019) [Online]. Available: https://eos.io/, Accessed on: May 12, 2019.
[120]
BitShares. (2019) [Online]. Available: https://bitshares.org/, Accessed on: May 13, 2019.
[121]
Hyperledger Fabric. (2019) [Online]. Available: https://www.hyperledger.org/projects/fabric, Accessed on: May 17, 2019.
[122]
Ripple. (2019) [Online]. Available: https://ripple.com/, Accessed on: May 18, 2019.
[123]
Stellar. (2019) [Online]. Available: https://www.stellar.org/, Accessed on: May 19, 2019.
[124]
B. C. Florea, “Blockchain and Internet of Things data provider for smart applications,” in Proc. 2018 7th Mediterranean Conference on Embedded Computing (MECO), Budva, Montenegro, 2018, pp. 1-4. doi: 10.1109/MECO.2018.8406041
[125]
IOTA. (2018) [Online]. Available: https://www.iota.org/, Accessed on: Oct. 17, 2018.
[126]
Z. Lu, W. Liu, Q. Wang, G. Qu, and Z. Liu, “A Privacy-Preserving Trust Model Based on Blockchain for VANETs,” in IEEE Access, vol. 6, pp. 45655-45664, 2018. doi: 10.1109/ACCESS.2018.2864189.
[127]
N. Malik, P. Nanda, A. Arora, X. He, and D. Puthal, “Blockchain Based Secured Identity Authentication and Expeditious Revocation Framework for Vehicular Networks,” in Proc. 17th IEEE International Conference on Trust, Security and Privacy in Computing and Communications / 12th IEEE Internal Conference on Big Data Science and Engineering (TrustCom/BigDataSE), New York, NY, 2018. pp. 674-679. doi: 10.1109/TrustCom/BigDataSE.2018.00099.
[128]
J. Kang, Z. Xiong, D. Niyato, D. Ye, D. Kim, and J. Zhao, “Towards Secure Blockchain-enabled Internet of Vehicles: Optimizing Consensus Management Using Reputation and Contract Theory,” IEEE Transactions on Vehicular Technology, vol. 68, no. 3, pp. 2906-2920, Mar. 2019. doi: 10.1109/TVT.2019.2894944.
[129]
H. Khelifi, S. Luo, B. Nour, H. Moungla, and S.-H. Ahmed, “Reputation-Based Blockchain for Secure NDN Caching in Vehicular Networks,” in Proc. IEEE Conference on Standards for Communications and Networking (CSCN), IEEE, 2018, pp. 1-6. doi: 10.1109/CSCN.2018.8581849.
[130]
R.-W. van der Heijden, F. Engelmann, D. Mödinger, F. Schönig, and F. Kargl, “Blackchain: Scalability for Resource-Constrained Accountable Vehicle-to-X Communication,” in Proc. 1st ACM Workshop on Scalable and Resillient Infrastructures for Distributed Ledgers (SERIAL ’17), New York, NY, USA, 2017. pp. 4-5. doi: 10.1145/3152824.3152828.
[131]
A.-M. Antonopoulos, “Mastering Bitcoin,” O’Reily. Chapter 5, [Online]. Available: https://www.oreilly.com/library/view/mastering-bitcoin/9781491902639/ch05.html
[132]
N. Szabo, “Smart Contracts: Formalizing and Securing Relationships on Public Networks,” First Monday, vol. 2, no. 9-1, Sep. 1997. [Online]. Available: https://journals.uic.edu/ojs/index.php/fm/articl
e/view/548/469.
[133]
S. Burkhard and T. Bocek, “Smart contracts - Blockchains in the wings,” in Digital Marketplaces Unleashed. pp. 169-184, Sep. 2017. doi: 10.1007/978-3-662-49275-8_19.
[134]
A. Juels, A. Kosba, and E. Shi, “The Ring of Gyges: Investigating the Future of Criminal Smart Contracts,” in Proc. of the 2016 ACM SIGSAC Conference on Computer and Communications Security (CCS’16), ACM, New York, NY, USA, 283-295. doi: 10.1145/2976749.2978362.
[135]
F. Vogelsteller and V. Buterin, “EIP 20: ERC-20 Token Standard,” 2015. [Online]. Available: https://eips.ethereum.org/EIPS/eip-20
[136]
W. Entriken, D. Shirley, J. Evans, and N. Sachs, “EIP 721: ERC-721 Non-Fungible Token Standard,” 2018. [Online]. Available: https://eips.ethereum.org/EIPS/eip-721
[137]
CrypotoKitties. (2019) [Online]. Available: https://www.cryptokitties.co/, Accessed on: Aug. 11, 2019.
[138]
G. A. Carpenter, S. Grossberg, and D. B. Rosen “Fuzzy ART: Fast stable learning and categorization of analog patterns by an adaptive resonance system,” Neural Networks, vol. 4, pp. 759-771, 1991. doi: 10.1016/0893-6080(91)90056-B.
[139]
G. A. Carpenter, S. Grossberg, N. Markuzon, J. H. Reynolds, and D. B. Rosen, “Fuzzy ARTMAP: A neural network architecture for incremental supervised learning of analog multidimensional maps,” IEEE Transactions on Neural Networks, vol. 3, pp. 698-713, Sep. 1992. doi: 10.1109/72.159059.
[140]
S. Liu and K. G. Paterson, “Simulation-based Selective Opening CCA Security for PKE from Key Encapsulation Mechanisms,” in IACR International Workshop on Public Key Cryptography, Springer, Berlin, Heidelberg, 2015. p. 3-26. doi: 10.1007/978-3-662-46447-2_1.
[141]
A. Casteigts, A. Nayak, and I. Stojmenovic, “Multicasting, Geocasting, and Anycasting in Sensor and Actuator Networks,” in Wireless Sensor and Actuator Networks: Algorithms and Protocols for Scalable Coordination and Data Communication, Wiley, 2010, ch. 5, pp. 127-152. doi: 10.1002/9780470570517.ch5.
[142]
X. Liu, A. Casteigts, N. Goel, A. Nayak, and I. Stojmenovic, “Multiratecast in Wireless Fault Tolerant Sensor and Actuator Networks,” in Proc. 2nd International Conference on Computer Science and its Applications, Jeju, South Korea, 2009. pp. 1-6. doi: 10.1109/CSA.2009.5404301.
[143]
ns-3 Network Simulator. (2018) [Online]. Available: https://www.nsnam.org/, Accessed on: Oct. 16, 2018.
[144]
Simulation of Urban Mobility. (2019) [Online]. Available: http://sumo.sourceforge.net/, Accessed on: Mar. 8, 2019.
[145]
D. Krajzewicz, J. Erdmann, M. Behrisch, and L. Bieker, “Recent Development and Applications of SUMO - Simulation of Urban Mobility,” International Journal On Advances in Systems and Measurements, vol. 5 (3&4), pp. 128-138, Dec. 2012.
[146]
go-ethereum. (2019) [Online]. Available: https://github.com/ethereum/go-ethereum/, Accessed on: Mar. 8, 2019.
[147]
Traffic Data Collection System (TDCS). (2018) [Online]. Available: http://tisvcloud.freeway.gov.tw/his
tory/vd/, Accessed on: Oct. 16, 2018.
[148]
V. Buterin, “Log(coins)-sized proofs of inclusion and exclusion for RSA accumulators,” 2018. [Online]. Available: https://ethresear.ch/t/log-coins-sized-proofs-of-inclusion-and-exclusion-for-rsa-accumulators/3839
[149]
A. Marie, “Usage-Based Insurance: What it is, How it Works,” InsuranceHotline, Sep. 2016. [Online]. Available: https://www.insurancehotline.com/usage-based-insurance-what-it-is-how-it-works/ |