參考文獻 |
參考文獻
[1] M. Terraneo, M. Peyrard, and G. Casati,”Controlling the energy flow in Nonlinear lattices: A model for a thermal rectifier,” Phys. Rev. Lett. 88, p094302 ,(2002). [2] B. W. Li, L. Wang, and G. Casati,”Thermal diode: Rectification of heat flux,” Phys. Rev. Lett. 93, p184301, (2004).
[3] J. H. Lan and B. W. Li, ”Size-dependent thermal conductivity of nanoscale semiconducting systems,” Phys. Rev. B 74, p214305, (2006).
[4] S. Pal and I. K. Puri, ”Thermal rectification in a polymer-functionalized single-wall carbon nanotube,” Nanotechnology 25, p8, (2014).
[5] X. Cartoixa, L. Colombo, and R. Rurali,”Thermal Rectification by Design in Telescopic Si Nanowires,” Nano Lett. 15, p8255, (2015).
[6] Y. Li, X. Y. Shen, Z. H. Wu, J. Y. Huang, Y. X. Chen, Y. S. Ni, and J. P. Huang, ”Temperature-Dependent Transformation Thermotics: From Switchable Thermal Cloaks to Macroscopic Thermal Diodes,” Phys. Rev. Lett. 115, p195503, (2015).
[7] C. L. Chiu, C. H. Wu, B. W. Huang, C. Y. Chien and C. W. Chang, ”Detecting thermal rectification,”AIP ADVANCES 6, p121901, (2016).
[8] C. R. Otey, W. T. Lau, and S. H. Fan,”Thermal Rectification through Vacuum,” Phys. Rev. Lett. 104, p154301, (2010).
[9] D. M.-T. Kuo and Y. C. Chang,”Thermoelectric and thermal rectification properties of quantum dot junctions,” Phys. Rev. B 81, p205321, (2010).
[10] B. Li, L. Wang, and G. Casati, “Negative differential thermal resistance and thermal transistor”, Appl. Phys. Lett. 88, 143501 (2006).
[11] L. Wang and B. Li, “Thermal Logic Gates: Computation with Phonons”, Phys. Rev. Lett. 99, 177208 (2007).
[12] C. Starr, “The Copper Oxide Rectifier”, J. Appl. Phys. 7, 15 (1936).
[13] C. W. Chang, D. Okawa, A. Majumdar, and A. Zettl, “Solid-State Thermal Rectifier”, Science 314, 1121 (2006).
[14] K. Ito, K. Nishikawa, H. Iizuka, and H. Toshiyoshi,”Experimental investigation of radiative thermal rectifier using vanadium dioxide,” Appl. Phys. Lett. 105, p253503, (2014).
[15] M. J. Martinez-Perez, A. Fornieri, and F. Giazotto,”Rectification of electronic heat current by a hybrid thermal diode,” Nature Nanotech. 10, p303, (2015).
[16] H. Haug and A. P. Jauho, “Quantum Kinetics in Transport and Optics of Semiconductors”, (Springer, Heidelberg, 1996).
[17] D. M. T. Kuo and Y. C. Chang,”Thermoelectric properties of a quantum dot array connected to metallic electrodes,” Nanotechnology 24, p175403, (2013).
[18] R. K. Chen, A. I. Hochbaum, P. Murphy, J. Moore, P. D. Yang, and A. Majumdar, “Thermal Conductance of Thin Silicon Nanowires”, Phys. Rev. Lett. 101, 105501 (2008). [19] D. L. Nika, E. P. Pokatilov, A. A. Balandin, V. M. Fomin, A. Rastelli, and O. G. Schmidt, “Reduction of lattice thermal conductivity in one-dimensional quantum-dot superlattices due to phonon filtering”, Phys. Rev. B 84, 165415 (2011).
[20] Ming Hu and Dimos Poulikakos, “Si/Ge Superlattice Nanowires with Ultralow Thermal Conductivity”, Nano Lett. 12, 5487 (2012).
[21] D. M. T. Kuo, C. C. Chen, and Y. C. Chang, “Large enhancement in thermoelectric efficiency of quantum dot junctions due to increase of level degeneracy”, Phys. Rev. B 95, 075432 (2017).
[22] W. Lu, J. Xiang, B. P. Timko, Y. Wu, C. M. Lieber,”One-dimensional hole gas in germanium/silicon nanowire heterostructures,” Proc. Natl. Acad. Sci. U.S. A. 102, p10046, (2005).
[23] D. M. T. Kuo, “Heat diodes made of quantum dots embedded in nanowires connected to metallic electrodes” arXiv preprint arXiv:1706.06677, (2017)
[24] D. H. He, S. Buyukdagli and B. Hu, Phys. Rev. B 80, 104302 (2009). [25] L. Wang and B. Li, Phys. Rev. Lett. 99, 177208 (2007).
|