博碩士論文 106521025 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:45 、訪客IP:3.135.213.83
姓名 陳慧瑜(Hui-Yu Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 用泰勒級數求三角形內部向量及二維元件模擬
(Finding internal vector from the Taylor series in arbitrary triangle element for 2D semiconductor device simulation)
相關論文
★ 表面電漿共振效應於光奈米元件之數值研究★ 金氧半電容元件的暫態模擬之數值量測
★ 雙載子電晶體在一維和二維空間上模擬的比較★ 改善後的階層化不完全LU法及其在二維半導體元件模擬上的應用
★ 一維雙載子接面電晶體數值模擬之驗證及其在元件與電路混階模擬之應用★ 階層化不完全LU法及其在準靜態金氧半場效電晶體電容模擬上的應用
★ 探討分離式簡化電路模型在半導體元件模擬上的效益★ 撞擊游離的等效電路模型與其在半導體元件模擬上之應用
★ 二維半導體元件模擬的電流和電場分析★ 三維半導體元件模擬器之開發及SOI MOSFET特性分析
★ 元件分割法及其在二維互補式金氧半導體元件之模擬★ 含改良型L-ILU解法器及PDM電路表述之二維及三維元件數值模擬器之開發
★ 含費米積分之高效率載子解析模型及其在元件模擬上的應用★ 量子力學等效電路模型之建立及其對元件模擬之探討
★ 適用於二維及三維半導體元件模擬的可調變式元件切割法★ 整合式的混階模擬器之開發及其在振盪電路上的應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在本篇論文中,我們藉由泰勒級數法開發出了一套三角形網格模組,並利用此三角形網格模組去進行了半導體元件模擬,以驗證我們所開發出的模組是可行的,且利用泰勒級數法能夠更迅速更簡單地求出三角形內部電場。其中我們討論了零件掃描法應用於計算封閉面的優點,並利用矩型網格去做簡單的概念推導,接著再進入本論文的核心,介紹如何利用泰勒級數去求出三角形內部電場並開發出完整的三角形網格模組,最後再藉由程式去進行模擬驗證,包括三角形內部電場、電子電洞流密度與單顆矩型電阻,待確認我們所開發出的程式是有效的後,再將此三角形網格應用於其他半導體元件如PN二極體與BJT等,並模擬其特性曲線。
摘要(英) In this thesis, we successfully develop a triangular module by using the Taylor series, and use this module to simulate semiconductor devices and verify its validity. Furthermore, using the Taylor series to calculate the electric field of the triangular module is easy and simple. First of all, we discuss that using the element-by-element method in calculating the Gaussian surface is better than the node-by-node method, and we use the rectangular mesh module to explain a simple concept derivation. Then we introduce how to use the Taylor series to calculate the electric field, drift and diffusion current and verify the values. We also simulate a simple resistor and compare the value with the theoretical value. After confirming the resistor validity, we apply it to other semiconductor devices such as PN diodes and BJTs, and simulate their characteristic curves.
關鍵字(中) ★ 半導體元件
★ 泰勒級數
★ 元件模擬
關鍵字(英)
論文目次 目錄
摘要.......................................i
Abstract...................................ii
圖目錄......................................v
表目錄......................................vii
第一章 簡介.................................1
第二章 泰勒級數與三角型模型開發...............4
2.1零件掃描法之優點..........................4
2.2 二維矩型網格介紹.........................7
2.3 利用泰勒級數法求內部電場之模型開發........11
第三章 泰勒級數與三角型模型驗證...............22
3.1內部電場驗證.............................22
3.2電子流與電洞流密度驗證....................25
3.3單顆矩形電阻模擬與驗證....................31
第四章 泰勒級數與二維半導體元件之應用.........34
4.1多顆矩型電阻模擬與驗證....................34
4.2 PN二極體與其特性曲線模擬.................36
4.3簡化的二維BJT模擬分析與討論...............41
第五章 結論.................................46
參考資料....................................47
參考文獻 [1] Y. M. Li, “Research on Development of Computer Simulation Methods for Semiconductor Devices and Nanostructures,” D. S. Thesis, Institute of Electronics, National Chiao Tung University, Taiwan, Republic of China, 2000.
[2] M. J. Zeng, “Development of Triangular Element and its Applications to Arbitrary 2D Semiconductor Device,” M. S. Thesis, Institute of EE, Nation Central University, Taiwan, Republic of China, 2014.
[3] W. T. Shen, “Finding Internal Vector from the Edge Vector in Obtuse Triangle Element for 2D Semiconductor Device Simulation,” M. S. Thesis, Institute of EE, Nation Central University, Taiwan, Republic of China, 2016.
[4] R. A. Jabr, M. Hamad, Y. M. Mohanna, “Newton-Raphson Solution of Poisson’s Equation in a PN Diode,” Int. J. Electrical Eng. Educ., Jan. 2007.
[5] M. S. Li, “Rectangular Transform of Trapezoidal Mesh and Its Application to Cylindrical MOSFETs,” M. S. Thesis, Institute of EE, Nation Central University, Taiwan, Republic of China, 2011.
[6] M. C. Huang, “Area-Partition Problems in 2D Semiconductor Devices Simulation,” M. S. Thesis, Institute of EE, Nation Central University, Taiwan, Republic of China, 2015.
[7] D. J. Riley and C. D. Turner, “Interfacing Unstructured Tetrahedron Grids to Structured-Grid FDTD,” IEEE Trans, Microwave and Guide Wave Letters, vol. 5, no. 9, pp.284-286, Sep 1995.
[8] D. A. Neamen, Semiconductor Physics and Devices, 3rd ed. McGraw-Hill Companies Inc., New York, 2003.
[9] R. E. Bank, D. J. Rose, and W. Fitchtner, “Numerical Methods for Semiconductor Device,” IEEE Trans, Electron Devices, vol. 30, no. 9, Sep.1983.
[10] J. H. Seo, Y. J. Yoon, S. Lee, J. H. Lee, S. Cho, and I. M. Kang, “Design and Analysis of Si-Based Arch-Shaped Gate-All-Around (GAA) Tunneling Field-Effect Transistor (TFET),” Current Applied Physics, vol. 15, pp.208-212, 2015.
[11] B. Adolph and F. Bechstedt, “Ab Initio Second-Harmonic Susceptibilities of Semiconductors: Generalized Tetrahedron Method and Quasiparticle Effects,” Physical Review B, 1998.
[12] M. B. Patil, “New Discretization Scheme for Two-Dimensional Semiconductor Device Simulation on Triangular Grid.” IEEE Trans, Computer-Aided Design of Integrated Circuits and System, vol. 17, no. 11, pp.1160-1165, Nov. 1998.
[13] C. C. Lin and M. E. Law, “2-D Mesh Adaption and Flux Discretization for Dopant Diffusion Modeling,” IEEE Trans, Computer-Aided Design of Integrated Circuits and Systems, vol. 15, no. 2, pp.194-207, Feb. 1996.
[14] H. C. Casey. Devices for integrated circuits: silicon and III-V compound semiconductors. New York: John Wiley, 1999.
[15] P. C. Cordes, “Finite Element Approximation of the Diffusion Operator on Tetrahedral,” Society for Industrial and Applied Mathematics, vol. 19, no. 4, pp.1154-1168, 1998.
[16] C. C. Chang, “Improvement of 2-D and 3-D Semiconductor Devices Simulation Using Equivalent Circuit Model,” Ph.D. Dissertation, Institute of EE, National Central University, Taiwan, Republic of China, Jun. 2006.
[17] Y. C. Lin, “Breakdown Simulation of a Spherical PN Junction in Cylindrical Coordinates,” M. S. Thesis, Institute of EE, Nation Central University, Taiwan, Republic of China, 2012.
[18] T.W. Huang, “Finding Internal Vector from the Axis Method in Arbitrary Triangle Element for 2-D Semiconductor Device Simulation,” M. S. Thesis, Institute of EE, Nation Central University, Taiwan, Republic of China, 2018.
指導教授 蔡曜聰 審核日期 2019-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明