博碩士論文 106521015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:54 、訪客IP:3.21.106.69
姓名 龔筱筑(Hsaio-Chu Kung)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 鎂矽錫熱電材料之製程開發及模組研究
(Process Innovation and Module Development of Mg2(Si,Sn) Thermoelectric Materials)
相關論文
★ 以熱熔異質磊晶成長法製造之鍺光偵測器★ 在SOI基板上以快速熱熔法製造高品質鍺及近紅外線光偵測元件之研製
★ 鉭錳合金及銅鍺化合物應用於積體電路後段製程中銅導線之研究★ 快速熱熔磊晶成長法製造側向PIN(Ge-Ge-Si)光偵測器
★ 二維薄膜及三維塊材Seebeck係數量測★ 塊材、薄膜與奈米線之熱導係數量測方法探討
★ 以快速熱熔異質磊晶成長法製作鍺矽累增型光偵測器★ 以快速熱熔融磊晶成長法製作 鍺錫合金PIN型光偵測器
★ 利用火花電漿燒結法製備以矽為基底之奈米材料於熱電特性上之應用研究★ P型金屬氧化物薄膜的製備應用於軟性電子
★ 金屬氧化物製備應用於軟性電子元件★ 超導材料釔鋇銅氧化物熱電特性量測分析
★ 鎂矽錫合金熱電特性研究及應用★ 矽基熱電模組開發及特性研究
★ P型金屬氧化物與硫化物之研究★ 物聯網之熱感測器應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 環境變遷與能源議題是現今社會上很大的問題,熱電材料是一個以材料本身,使得熱能與電能之間能夠互相轉換,並在轉換過程中無任何廢物及汙染產生的發電方式,若能有效利用將是十分環保的能源使用方式,將其應用於廢熱回收、溫差發電、熱電置冷等,當中影響熱電效應的好壞主要取於熱電材料本身具有的熱電優值(ZT)。
本研究以探討熱電材料的特性及將其做成模組探討ZT值,從材料製作到模組皆由本實驗室完成,將粉末冷壓成塊材,利用不同溫度退火,製作出結構及特徵峰值明確的粉末,再次冷壓退火,製作出結構穩固的試片,利用這個試片做成模組,並量測其特性。
摘要(英) Climate change and energy issues are big topics in today′s society.
Thermoelectric power generation is one kind of power generation methods that uses materials themselves to convert heat into electricity without any waste or pollution during the conversion process. The effect can be applied to waste heat recovery, temperature difference power generation, thermoelectric cooling, etc. The impact of the thermoelectric effect is mainly taken from the thermoelectric quality (ZT) of the thermoelectric material.
This study explores the characteristics of thermoelectric materials and modules to investigate the ZT values. From materials to module fabrication, we innovate a new method to produce Mg2(Si,Sn) nanopowders and bulks by powder mixing, cold-pressing and different annealing processes, and a module for thermoelectric characteristic measurement.
關鍵字(中) ★ 熱電材料
★ 熱電模組
★ ZT值
關鍵字(英) ★ thermoelectric materials
★ thermoelectric modules
★ ZT values
論文目次 目錄
摘要 i
致謝 iii
第一章 緒論 1
1.1研究動機 1
1.2研究目的 2
第二章 基礎原理與文獻回顧 4
2.1基礎原理 4
2.1.1塞貝克效應 4
2.1.2帕爾貼效應 5
2.1.3 湯姆森效應 5
2.2熱電優值 6
2.2.1熱電優值定義 6
2.2.2熱電轉換效率 7
2.3熱電應用 7
2.4文獻 10
2.4.1溶融法+退火(melting+annealing) 10
2.4.2溶融法+熱壓(melting+hot pressing) 11
2.4.3球磨+熱壓(ball milling+hot pressing) 12
2.4.4熱熔紡絲+火花電漿(MS+SPS) 15
第三章 實驗方法與儀器 20
3.1實驗方法 20
3.1.1球磨矽粉末 20
3.1.2混合粉末與摻雜 20
3.1.3冷壓成塊材 20
3.1.4封管與退火 20
3.1.5組裝模組 20
3.2量測儀器 21
3.2.1電導率量測 21
3.2.2塞貝克(seebeck)量測 23
3.2.3密度量測 24
3.2.4熱擴散量測 25
3.2.5比熱量測 25
3.2.6熱導率量測 26
3.2.7熱電優值(ZT figure of merit) 26
3.2.8結構分析 27
3.2.9材料分析 27
3.2.10 模組電性分析 28
第四章 實驗流程與步驟 31
4.1前言 31
4.2實驗設計及流程 32
4.3實驗步驟 33
4.3.1矽粉末球磨 33
4.3.2 N-type摻雜 35
4.3.3 混和Mg、Si、Sn粉末 37
4.3.4冷壓成塊材 38
4.3.5封管與退火/碳紙包覆與退火 39
4.3.6粉末化重新壓塊再燒結 40
4.3.7組裝模組 40
第五章 實驗結果與討論 42
5.1前言 42
5.2 N-type試片觀察與分析 43
5.2.1退火後塊材形貌 43
5.2.2掃描電子顯微鏡(SEM) 46
5.2.3 X射線衍射儀(XRD) 48
5.2.4電阻率量測 53
5.2.5塞貝克(Seebeck)量測 55
5.2.6熱導率(k)量測 56
5.2.7熱電優值(ZT值)與功率因子 57
5.2.8 N-type不同方法之數據比較 58
5.3 P-type試片觀察與分析 59
5.3.1退火後塊材形貌 59
5.3.2掃描電子顯微鏡(SEM) 60
5.3.3電阻率量測 61
5.3.4塞貝克(Seebeck)量測 62
5.3.5熱導率(k)量測 62
5.3.6熱電優值(ZT值)與功率因子 63
5.4 模組觀察與分析 64
5.4.1模組外觀 64
5.4.2模組量測 64
5.4.3模組量測數值 65
第六章 結論 66
參考文獻 67
參考文獻 參考文獻
[1] 黃振東、徐振庭, "熱電材料原理," 科學發展, vol. 486 期, pp. 48-53, 2013 年 6 月.
[2] G. J. Snyder, "Small Thermoelectric Generators," The Electrochemical Society Interface, pp. 54-56, 2008.
[3] M. S. Dresselhaus et al., "New Directions for Low-Dimensional Thermoelectric Materials," Advanced Materials, vol. 19, no. 8, pp. 1043-1053, 2007.
[4] J. R. Szczech, J. M. Higgins, and S. Jin, "Enhancement of the thermoelectric properties in nanoscale and nanostructured materials," J. Mater. Chem, vol. 21, no. 12, pp. 4037-4055, 2011.
[5] R. Venkatasubramanian et al., "Thin-film thermoelectric devices with high room-temperature figures of merit," Nature 413, pp. 597-602, 2001.
[6] K. F. Hsu et al., "Cubic AgPb(m)SbTe(2+m): bulk thermoelectric materials with high figure of merit," Science, vol. 303, no. 5659, pp. 818-21, Feb 6 2004.
[7] G. Tan et al., "Extraordinary role of Hg in enhancing the thermoelectric performance of p-type SnTe," Energy & Environmental Science, vol. 8, no. 1, pp. 267-277, 2015.
[8] G. Tan et al., "Valence Band Modification and High Thermoelectric Performance in SnTe Heavily Alloyed with MnTe," J Am Chem Soc, vol. 137, no. 35, pp. 11507-16, Sep 9 2015.
[9] G. Tan et al., "Codoping in SnTe: Enhancement of Thermoelectric Performance through Synergy of Resonance Levels and Band Convergence," J Am Chem Soc, vol. 137, no. 15, pp. 5100-12, Apr 22 2015.
[10] G. Tan et al., "High thermoelectric performance of p-type SnTe via a synergistic band engineering and nanostructuring approach," J Am Chem Soc, vol. 136, no. 19, pp. 7006-17, May 14 2014.
[11] Bed Poudel, 2* Qing Hao,3* Yi Ma,1,2 et al., "High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys," SCIENCE, vol. VOL 320, pp. 634-638, 2008.
[12] W. Xie et al., "Identifying the specific nanostructures responsible for the high thermoelectric performance of (Bi,Sb)2Te3 nanocomposites," Nano Lett, vol. 10, no. 9, pp. 3283-9, Sep 8 2010.
[13] V. K. Zaitsev et al., "Highly effectiveMg2Si1−xSnxthermoelectrics," Physical Review B, vol. 74, no. 4, 2006.
[14] B. Yu et al., "Enhancement of thermoelectric properties by modulation-doping in silicon germanium alloy nanocomposites," Nano Lett, vol. 12, no. 4, pp. 2077-82, Apr 11 2012.
[15] P. Gao, J. D. Davis, V. V. Poltavets, and T. P. Hogan, "The p-type Mg2LixSi0.4Sn0.6 thermoelectric materials synthesized by a B2O3 encapsulation method using Li2CO3 as the doping agent," Journal of Materials Chemistry C, vol. 4, no. 5, pp. 929-934, 2016.
[16] P. Gao, X. Lu, I. Berkun, R. D. Schmidt, E. D. Case, and T. P. Hogan, "Reduced lattice thermal conductivity in Bi-doped Mg2Si0.4Sn0.6," Applied Physics Letters, vol. 105, no. 20, p. 202104, 2014.
[17] Bui Duc Long1, Duong Ngoc Binh1, Le Minh Hai1, Le Hong Thang2, Tran Duc Huy3, "THERMOELECTRIC MATERIALS: FUNDAMENTAL, APPLICATIONS AND CHALLENGES," Vietnam Journal of Science and Technology, vol. 56, pp. 1-13, 2017.
[18] M. I. Fedorov, "THERMOELECTRIC SILICIDES: PAST, PRESENT AND FUTURE," Journal of Thermoelectricity no. ISSN 1607-8829, pp. 51-60, ,2009.
[19] W. Xie, X. Tang, Y. Yan, Q. Zhang, and T. M. Tritt, "Unique nanostructures and enhanced thermoelectric performance of melt-spun BiSbTe alloys," Applied Physics Letters, vol. 94, no. 10, p. 102111, 2009.
[20] X. Su et al., "Self-propagating high-temperature synthesis for compound thermoelectrics and new criterion for combustion processing," Nat Commun, vol. 5, p. 4908, Sep 16 2014.
[21] T. Ikeda, L. Haviez, Y. Li, and G. J. Snyder, "Nanostructuring of thermoelectric Mg2Si via a nonequilibrium intermediate state," Small, vol. 8, no. 15, pp. 2350-5, Aug 6 2012.
[22] M. I. Fedorov, V. K. Zaitsev, and G. N. Isachenko, "High Effective Thermoelectrics Based on the Mg2Si-Mg2Sn Solid Solution," Solid State Phenomena, vol. 170, pp. 286-292, 2011.
[23] R. Demchyna, S. Leoni, H. Rosner, and U. Schwarz, "High-pressure crystal chemistry of binary intermetallic compounds," Zeitschrift für Kristallographie - Crystalline Materials, vol. 221, no. 5-7, 2006.
[24] W. Liu, K. Yin, Q. Zhang, C. Uher, and X. Tang, "Eco-friendly high-performance silicide thermoelectric materials," National Science Review, vol. 4, no. 4, pp. 611-626, 2017.
[25] T.J.Seebeck, "<Ueber die magnetische Polarisation der Metalle und Erze durch Temperatur‐Differenz>," Annalen Der Physik, 1821.
[26] 巫振榮, "<熱電元件應用>," 奈米通訊 NANO COMMUNICATION vol. 20, p. No.4.
[27] U. o. P. M. M. R. Dr. Steven O’Halloran, University of Portland, "<Power and Efficiency Measurement in a Thermoelectric Generator.pdf>," American Society for Engineering Educatio, 2012.
[28] V. P. I. a. M. K. H. C. B. ALCOCK, "VAPOUR PRESSURE EQUATIONS FOR THE METALLIC ELEMENTS: 298-2500K," Canadian Metallurgical Quarterly,, vol. 23, pp. 309-312, 1984).
[29] Q. Zhang, J. He, T. J. Zhu, S. N. Zhang, X. B. Zhao, and T. M. Tritt, "High figures of merit and natural nanostructures in Mg2Si0.4Sn0.6 based thermoelectric materials," Applied Physics Letters, vol. 93, no. 10, p. 102-109, 2008.
[30] H. Gao, T. Zhu, X. Liu, L. Chen, and X. Zhao, "Flux synthesis and thermoelectric properties of eco-friendly Sb doped Mg2Si0.5Sn0.5 solid solutions for energy harvesting," Journal of Materials Chemistry, vol. 21, no. 16, p. 5933, 2011.
[31] J. Mao et al., "Thermoelectric properties of materials near the band crossing line in Mg2Sn–Mg2Ge–Mg2Si system," Acta Materialia, vol. 103, pp. 633-642, 2016.
[32] X. Zhang, H. Liu, Q. Lu, J. Zhang, and F. Zhang, "Enhanced thermoelectric performance of Mg2Si0.4Sn0.6 solid solutions by in nanostructures and minute Bi-doping," Applied Physics Letters, vol. 103, no. 6, p. 063901, 2013.
[33] Q. Zhang, Y. Zheng, X. Su, K. Yin, X. Tang, and C. Uher, "Enhanced power factor of Mg 2 Si 0.3 Sn 0.7 synthesized by a non-equilibrium rapid solidification method," Scripta Materialia, vol. 96, pp. 1-4, 2015.
[34] E. H. H.J. FECHT, Z. FU, and W.L. JOHNSON, "<Nanocrystalline metals prepared by high-energy ball milling>," METALLURGICAL TRANSACTIONS, vol. 21, pp. 2333-2337, 1990.
[35] Z. S. a. T. P. e. J. Navrhtil, "<Thermoelectric properties of p-type antimony bismuth telluride alloys prepared by cold pressing>," Pergamon, vol. 31, pp. 1559-1566, 1996.
[36] A. O. JOHN, "<The design and manufacture of the Four-Point Probe>," Kenyatta University, 2010.
[37] P. R. a. J. M. Gutierrez-Zorrilla, "<A quick method for determining the density of single crystals>," Chemical Education, vol. 62, pp. 167-168, 1985.
[38] W. Nunes dos Santos, P. Mummery, and A. Wallwork, "Thermal diffusivity of polymers by the laser flash technique," Polymer Testing, vol. 24, no. 5, pp. 628-634, 2005.
[39] T. T. M. Pooria Gill, 1 and Bijan Ranjbar1,2,*, "<Differential Scanning Calorimetry Techniques Applications in Biology>," Biomolecular Techniques, vol. 21, pp. 167–193 2010.
[40] A. F. Ioffe, L. S. Stil′bans, E. K. Iordanishvili, T. S. Stavitskaya, A. Gelbtuch, and G. Vineyard, "Semiconductor Thermoelements and Thermoelectric Cooling," Physics Today, vol. 12, no. 5, pp. 42-42, 1959.
[41] L. D. Hicks and M. S. Dresselhaus, "Thermoelectric figure of merit of a one-dimensional conductor," Physical Review B, vol. 47, no. 24, pp. 16631-16634, 1993.
[42] D. B. Lewis, "Scanning Electron Microscopy and X-ray Microanalysis," Transactions of the IMF, vol. 70, no. 4, pp. 198-202, 2017.
[43] A. A. Bunaciu, E. G. Udristioiu, and H. Y. Aboul-Enein, "X-ray diffraction: instrumentation and applications," Crit Rev Anal Chem, vol. 45, no. 4, pp. 289-99, 2015.
[44] 王威傑, "矽基熱電模組開發及特性研究 The Research and Development of Si-based Thermoelectric Modules," 國立中央大學, 2017.
[45] 詹季燁, "N型鎂矽錫熱電材料之製程開發及模組研究 Process innovation and module developement of n-type Mg2(Si,Sn) thermoelectric materials," 國立中央大學, 2019.
指導教授 辛正倫(Cheng-Lun Hsin) 審核日期 2019-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明