博碩士論文 105521111 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:43 、訪客IP:3.15.17.25
姓名 黃才源(Tsai-Yuan Huang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 以90-nm CMOS 製程實現之47-GHz 壓控振盪器設計
(A 47-GHz Voltage Controlled Oscillator in 90-nm CMOS Process)
相關論文
★ 應用於衛星通訊之QFN封裝X-/Ku-Band 低雜訊放大器設計★ 應用於太赫茲成像系統340-GHz反射器天線系統和85-GHz二倍頻器
★ 使用40奈米互補式金氧半製程之85-GHz功率放大器設計★ 應用於太赫茲通訊之 40 奈米互補式金氧半二倍頻器設計
★ 應用於太赫茲影像雷達及無線通訊系統之40-nm CMOS壓控振盪器
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本篇論文提出一個可應用於毫米波通訊的47-GHz的壓控振盪器,採用90-nm CMOS製程實現,擁有低成本且體積小的優點。此電路使用交互耦合對的電晶體產生負電阻,使其能夠在高頻中更容易維持振盪條件,並透過緩衝器及電壓放大器輸出,使輸出功率可提高至2.7 dBm。在操作電壓1.2 V下,整體電路的功耗為49.65 mW。為了增加振盪器的可調頻寬,本文提出於振盪器電路中加入8組的可開關電容器,使振盪器可藉由切換電容達到增加調頻範圍的效果,當操作於47-GHz時的單一可調頻寬為3.16%,而總可調頻寬則可達到10.38 %。此電路在post-simulation時其在雜訊頻率1 MHz的結果為-86.82 dBc/Hz。
為了提供壓控振盪器所需的8個數位控制位元,並且避免因為加入的pad數量太多而使晶片面積增加,本文提出一種低延遲、低功耗的3-Wire數位控制電路加入於壓控振盪器的電路前端,藉由SPI的通訊介面將一串數位訊號提供給3-wire電路,將訊號中的8個數位控制位元儲存於移位暫存器之後,利用並接的暫存器從接收的數位訊號中擷取出所需的8個控制位元給予壓控振盪器,此時僅需要3個輸入接腳(Clk (Clock), LE(Parallel-out Enable), D_in(Digital Data)),即可產生振盪器所需之8個數位控制位元,因此可以有效的縮減輸入數位控制位元所需的pad,而大幅減少晶片面積。
摘要(英) In this thesis, a low-cost and compact 47-GHz voltage-controlled oscillator in a 90-nm CMOS technology for millimeter-wave communication is proposed. This circuit uses the cross-coupled transistors to generate a negative resistance that makes it easier to maintain oscillation conditions at high frequencies. The VCO increase the output power to 2.7 dBm with a buffer and a voltage amplifier. The power consumption is 49.65 mW from a 1.2 V supply. In order to increase the tuning range of the oscillator, this thesis proposes to add 8 sets of switchable capacitors to the oscillator circuit, so that it can increase the tuning range of the VCO by switching the capacitors. While the oscillator is operated at 47-GHz, the single tuning range is 3.16%, and the total tuning range is 10.38%. The phase noise at 1 MHz offset from the carrier is -86.82 dBc/Hz in post-simulation.
In order to provide the eight digital control bits to switch the capacitors of the VCO, and to avoid adding too much pads in this chip result in increasing the chip size, this thesis propose a low-delay and low-cost 3-wire digital control circuit that added to the VCO front end. A series of digital signals are provided to the 3-wire circuit through the communication interface of the SPI, and the digital control bits in the signal are stored in the shift register. Then, using the parallel register, the required eight control bits are extracted from the received digital signal to the VCO. At this time, only three input pins (Clk (Clock), LE(Parallel-out Enable), D_in(Digital Data)) are needed in this chip to generate the digital control bits required by the oscillator so that the pads for inputting the digital control bits can be effectively reduced, and the chip size will be greatly reduced.
關鍵字(中) ★ 壓控震盪器
★ 可變電容器
★ 數位控制
關鍵字(英) ★ VCO
★ Varactor
★ Digital Control
論文目次 摘要 I
Abstract II
致謝 III
目錄 V
圖目錄 VII
表目錄 XI
第一章 緒論 1
1.1 振盪器及毫米波通訊應用 1
1.2 壓控振盪器架構比較 2
1.3 研究動機 9
1.4 論文架構 11
第二章 壓控振盪器設計原理 12
2.1 原理分析 12
2.2 架構分析 13
2.3 可變電容器架構及原理分析 17
第三章 可數位調控之47-GHz壓控振盪器設計電路介紹 28
3.1 壓控振盪器(Voltage Controlled Oscillator) 29
3.1.1 電路設計與分析 30
3.1.2 設計與佈局考量 36
3.1.3 模擬結果與討論 45
3.2 緩衝器與電壓放大器 48
3.2.1 設計與佈局考量 49
3.2.2 模擬結果與討論 53
3.3 3-Wire電路 58
3.3.1 電路分析與原理 61
3.3.2 設計與佈局考量 66
3.3.3 電路驗證與模擬結果 75
第四章 總結與未來發展 83
4.1 總結 83
4.2 未來發展 84
參考文獻 85
參考文獻 [1] N. Betzalel, Y. Feldman and P. B. Ishai, “The Modeling of the Absorbance of Sub-THz Radiation by Human Skin,” IEEE Transactions on Terahertz Science and Technology, vol. 7, no. 5, pp. 521-528, Sept. 2017.
[2] J. Lee, Y. Li, M. Hung and S. Huang, “A Fully-Integrated 77-GHz FMCW Radar Transceiver in 65-nm CMOS Technology,” IEEE Journal of Solid-State Circuits, vol. 45, no. 12, pp. 2746-2756, Dec. 2010.
[3] A. Townley et al., “A 94-GHz 4TX–4RX Phased-Array FMCW Radar Transceiver With Antenna-in-Package,” IEEE Journal of Solid-State Circuits, vol. 52, no. 5, pp. 1245-1259, May 2017.
[4] F.-K. Wang, M.-C. Tang, Y.-C. Chiu, and T.-S. Horng, “Gesture sensing using retransmitted wireless communication signals based on Doppler radar technology,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 12,pp. 4592–4602, Dec. 2015.
[5] I. Nasr et al., “A highly integrated 60 GHz 6-channel transceiver with antenna in package for smart sensing and short-range communications,” IEEE J. Solid-State Circuits, vol. 51, no. 9, pp. 2066–2076, Sep. 2016.
[6]  W. Wu, J. R. Long and R. B. Staszewski, “A digital ultra-fast acquisition linear frequency modulated PLL for mm-wave FMCW radars,” IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Singapore, 2009, pp. 32-35.
[7] W. Wu, J. R. Long, R. B. Staszewski and J. J. Pekarik, “High-resolution 60-GHz DCOs with reconfigurable distributed metal capacitors in passive resonators,” IEEE Radio Frequency Integrated Circuits Symposium, Montreal, QC, 2012, pp. 91-94.
[8] Y. Kim et al., “A Ku-Band CMOS FMCW Radar Transceiver for Snowpack Remote Sensing,” IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 5, pp. 2480-2494, May 2018.
[9] V. Jain, B. Javid and P. Heydari, “A BiCMOS Dual-Band Millimeter-Wave Frequency Synthesizer for Automotive Radars,” IEEE Journal of Solid-State Circuits, vol. 44, no. 8, pp. 2100-2113, Aug. 2009.
[10] Changhua Cao and K. K. O, "Millimeter-wave voltage-controlled oscillators in 0.13-m CMOS technology," IEEE Journal of Solid-State Circuits, vol. 41, no. 6, pp. 1297-1304, June 2006.
[11] R. B. Staszewski, Chih-Ming Hung, D. Leipold and P. T. Balsara, “A first multigigahertz digitally controlled oscillator for wireless applications,” IEEE Transactions on Microwave Theory and Techniques, vol. 51, no. 11, pp. 2154-2164, Nov. 2003.
[12] I. Sarkas, J. Hasch, A. Balteanu and S. P. Voinigescu, “A Fundamental Frequency 120-GHz SiGe BiCMOS Distance Sensor With Integrated Antenna,” IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 3, pp. 795-812, March 2012.
[13] W. Debski, W. Winkler, Y. Sun, M. Marinkovic, J. Borngräber and J. C. Scheytt, “120 GHz radar mixed-signal transceiver,” 7th European Microwave Integrated Circuit Conference, Amsterdam, 2012, pp. 191-194.
[14] R. Genesi, F. M. De Paola and D. Manstretta, “A 53 GHz DCO for mm-wave WPAN,” IEEE Custom Integrated Circuits Conference, San Jose, CA, 2008, pp. 571-574.
[15] M. E. Heidari, M. Lee and A. A. Abidi, “All-Digital Outphasing Modulator for a Software-Defined Transmitter,” IEEE Journal of Solid-State Circuits, vol. 44, no. 4, pp. 1260-1271, April 2009.
[16] S. Huang, S. Liu, J. Hu, R. Wang and Z. Zhu, “A 12-GHz Wideband Fractional-N PLL With Robust VCO in 65-nm CMOS,”IEEE Microwave and Wireless Components Letters.
[17] H. Hsieh, Y. Chen and L. Lu, “A Millimeter-Wave CMOS LC-Tank VCO With an Admittance-Transforming Technique,”IEEE Transactions on Microwave Theory and Techniques, vol. 55, no. 9, pp. 1854-1861, Sept. 2007.
[18] 謝宛庭,"應用於毫米波影像與太赫茲通訊之互補式金氧半94 GHz及200 GHz 接收機設計," 碩士論文 國立中央大學,January 2018.
[19] P. Andreani and S. Mattisson, “On the use of MOS varactors in RF VCOs,” IEEE Journal of Solid-State Circuits, vol. 35, no. 6, pp. 905-910, June 2000.
[20] M. Tiebout, “Low-power low-phase-noise differentially tuned quadrature VCO design in standard CMOS,” IEEE Journal of Solid-State Circuits, vol. 36, no. 7, pp. 1018-1024, July 2001.
[21] R. L. Bunch and S. Raman, “Large-signal analysis of MOS varactors in CMOS -Gm LC VCOs,” IEEE Journal of Solid-State Circuits, vol. 38, no. 8, pp. 1325-1332, Aug. 2003.
[22] A. Porret, T. Melly, C. C. Enz and E. A. Vittoz, “Design of high-Q varactors for low-power wireless applications using a standard CMOS process,” IEEE Journal of Solid-State Circuits, vol. 35, no. 3, pp. 337-345, March 2000.
[23] J. Victory, Zhixin Yan, G. Gildenblat, C. McAndrew and Jie Zheng, “A physically based, scalable MOS varactor model and extraction methodology for RF applications,” IEEE Transactions on Electron Devices, vol. 52, no. 7, pp. 1343-1353, July 2005.
[24] B.Razavi, “RF microelectronics”,2nd edition, Prentice - Hall, 2011
[25] Sarkas et al., “Silicon-Based radar and imaging sensors operating above 120 GHz,” 19th International Conference on Microwaves, Radar & Wireless Communications, Warsaw, 2012, pp. 91-96.
[26] M. Kraemer, D. Dragomirescu and R. Plana, “A High Efficiency Differential 60 GHz VCO in a 65 nm CMOS Technology for WSN Applications,”IEEE Microwave and Wireless Components Letters, vol. 21, no. 6, pp. 314-316, June 2011.
[27] W. Wu, J. R. Long and R. B. Staszewski, “High-Resolution Millimeter-Wave Digitally Controlled Oscillators With Reconfigurable Passive Resonators,” IEEE Journal of Solid-State Circuits, vol. 48, no. 11, pp. 2785-2794, Nov. 2013.
[28] Y. Sun and C. J. Scheytt, “A low-phase-noise 61 GHz push-push VCO with divider chain and buffer in SiGe BiCMOS for 122 GHz ISM applications,” IEEE Radio Frequency Integrated Circuits Symposium, Montreal, QC, 2012, pp. 79-82.
[29] Stephen Brown, Zvonko Vranesic, Fundamentals of digital logic with verilog design, 2nd ed. New Delhi: India, 2012.
指導教授 傅家相 李俊興(Jia-Shiang Fu Chun-Hsing Li) 審核日期 2019-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明