參考文獻 |
[1] 賴怡靜, "基於深度學習之距離估測與自動避障的戶外導航機器人," 碩士, 電機工程學系, 國立中央大學, 桃園縣, 2018.
[2] K. Karsch, C. Liu, and S. B. Kang, "Depth transfer: Depth extraction from video using non-parametric sampling," IEEE transactions on pattern analysis and machine intelligence, vol. 36, no. 11, pp. 2144-2158, 2014.
[3] D. Eigen, C. Puhrsch, and R. Fergus, "Depth map prediction from a single image using a multi-scale deep network," in Advances in neural information processing systems, 2014, pp. 2366-2374.
[4] I. Laina, C. Rupprecht, V. Belagiannis, F. Tombari, and N. Navab, "Deeper depth prediction with fully convolutional residual networks," in 2016 Fourth international conference on 3D vision (3DV), 2016: IEEE, pp. 239-248.
[5] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770-778.
[6] J. Zbontar and Y. LeCun, "Stereo Matching by Training a Convolutional Neural Network to Compare Image Patches," Journal of Machine Learning Research, vol. 17, no. 1-32, p. 2, 2016.
[7] N. Mayer et al., "A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 4040-4048.
[8] J. Xie, R. Girshick, and A. Farhadi, "Deep3d: Fully automatic 2d-to-3d video conversion with deep convolutional neural networks," in European Conference on Computer Vision, 2016: Springer, pp. 842-857.
[9] J. Flynn, I. Neulander, J. Philbin, and N. Snavely, "Deepstereo: Learning to predict new views from the world′s imagery," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 5515-5524.
[10] R. Garg, V. K. BG, G. Carneiro, and I. Reid, "Unsupervised cnn for single view depth estimation: Geometry to the rescue," in European Conference on Computer Vision, 2016: Springer, pp. 740-756.
[11] C. Godard, O. Mac Aodha, M. Firman, and G. Brostow, "Digging into self-supervised monocular depth estimation," arXiv preprint arXiv:1806.01260, 2018.
[12] V. Casser, S. Pirk, R. Mahjourian, and A. Angelova, "Depth Prediction Without the Sensors: Leveraging Structure for Unsupervised Learning from Monocular Videos," arXiv preprint arXiv:1811.06152, 2018.
[13] L. Doitsidis, A. Nelson, K. Valavanis, M. Long, and R. Murphy, "Experimental validation of a MATLAB based control architecture for multiple robot outdoor navigation," in Proceedings of the 2005 IEEE International Symposium on, Mediterrean Conference on Control and Automation Intelligent Control, 2005., 2005: IEEE, pp. 1499-1505.
[14] L. Doitsidis, K. P. Valavanis, and N. Tsourveloudis, "Fuzzy logic based autonomous skid steering vehicle navigation," in Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No. 02CH37292), 2002, vol. 2: IEEE, pp. 2171-2177.
[15] G. Oriolo, G. Ulivi, and M. Vendittelli, "Real-time map building and navigation for autonomous robots in unknown environments," IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 28, no. 3, pp. 316-333, 1998.
[16] C. Rusu, I. Birou, and E. Szöke, "Fuzzy based obstacle avoidance system for autonomous mobile robot," in 2010 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR), 2010, vol. 1: IEEE, pp. 1-6.
[17] J. Levinson et al., "Towards fully autonomous driving: Systems and algorithms," in 2011 IEEE Intelligent Vehicles Symposium (IV), 2011: IEEE, pp. 163-168.
[18] B. Huval et al., "An empirical evaluation of deep learning on highway driving," arXiv preprint arXiv:1504.01716, 2015.
[19] F. Endres, J. Hess, J. Sturm, D. Cremers, and W. Burgard, "3-D mapping with an RGB-D camera," IEEE transactions on robotics, vol. 30, no. 1, pp. 177-187, 2013.
[20] J. Gaspar, N. Winters, and J. Santos-Victor, "Vision-based navigation and environmental representations with an omnidirectional camera," IEEE Transactions on robotics and automation, vol. 16, no. 6, pp. 890-898, 2000.
[21] K. I. Khalilullah, S. Ota, T. Yasuda, and M. Jindai, "Development of robot navigation method based on single camera vision using deep learning," in 2017 56th annual conference of the society of instrument and control engineers of Japan (SICE), 2017: IEEE, pp. 939-942.
[22] W. Born and C. Lowrance, "Smoother Robot Control from Convolutional Neural Networks Using Fuzzy Logic," in 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), 2018: IEEE, pp. 695-700.
[23] (2019年, 6月). ZED [Online]. Available: https://www.stereolabs.com/zed/.
[24] C. Godard, O. Mac Aodha, and G. J. Brostow, "Unsupervised monocular depth estimation with left-right consistency," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 270-279.
[25] A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello, "Enet: A deep neural network architecture for real-time semantic segmentation," arXiv preprint arXiv:1606.02147, 2016.
[26] (2019年, 6月). Haversine formula [Online]. Available: https://en.wikipedia.org/wiki/Haversine_formula.
[27] (2019年, 6月). Spherical trigonometry [Online]. Available: https://en.wikipedia.org/wiki/Spherical_trigonometry.
|