參考文獻 |
[1] Y.Shim, C.-W. Kim, J. Lee, and S.-G. Lee, “Design of Full Band UWB Common-Gate LNA”, IEEE Microw. Wireless Compon Lett. vol.17, no.10, pp. 271-273, Oct-2007.
[2] A. M., Boon C. Chye, D. M. Anh, and Y. K. Seng, “A 3–8 GHz Low-Noise CMOS Amplifier”, IEEE Microw. Wireless Compon Lett. vol.19, no.4, pp. 245-247, April-2009.
[3] M.T. Reiha and J. R. Long, “A 1.2V Reactive-Feedback 3.1- 10.6 GHz Low-Noise Amplifier in 0.13µm CMOS”, IEEE J. Solid State Cricuits, vol.42, no.5, pp. 1023-1033, May. 2007.
[4] C.-C. Chiong, D.-J. Huang, C.-C. Chuang, Y. -J. Hwang, M.-T. Chen and H. Wang, “Cryogenic 8-18 GHz MMIC LNA using GaAs PHEMT”, IEEE Asia-Pacific Microw. Conf., 2013, pp. 261-263.
[5] H. L. Kao, C. S. Yeh, C. L. Cho, B. W. Wang, P. C. Lee, B. H. Wei, and H. C. Chiu, “Design of an S-band 0.35 μm AlGaN/GaN LNA using Cascode Topology”, Int. Symp. on Design and Diagnostics of Electronic Circuits & Systems (DDECS), IEEE, pp. 250-253, 2013.
[6] A. Seyfollahi , N. Jiang , J. Bornemann , L. B. G. Knee , D. Garcia and P. Niranjanan , “Full-Wave Analysis and Design of a Wideband GaAs pHEMT MMIC LNA,”IEEE Int. Symp. on Antenna Tech. and Applied Electromagnetics (ANTEM) , 2018, pp. 1-5.
[7] Y.-Y. Peng, et al., “A low power S-band receiver using GaAs pHEMT technology,” in IEEE 13th ISIC Symp. Dig., Dec., 2011.
[8] J.-C. Guo , C.-Sh. Lin and Y.-T. Liang, “Low voltage and low power UWB CMOS LNA using current-reused and forward body biasing techniques”, in 2017 IEEE MTT-S Int. Microw. Symp., June 2017, pp. 764-767.
[9] M. Parvizi , K. Allidina and M. N. El-Gamal, “A Sub-mW, Ultra-Low-Voltage, Wideband Low-Noise Amplifier Design Technique,”IEEE Trans. on Very Large Scale Int. (VLSI) Systems, 2015, pp. 1111-1122.
[10] G. Sapone and G. Palmisano, “A 3–10-GHz low-power CMOS low-noise amplifier for ultra-wideband communication,” IEEE Trans. Microw. Theory Techn, vol. 59, no. 3, pp. 678–686, Mar. 2011.
[11] Y. Chen,Y.-H. Lin,C.-C. Chiong and H. Wang, “A 0.38-V, Sub-mW 5-GHz Low Noise Amplifier with 43.6% Bandwidth for Next Generation Radio Astronomical Receivers in 90-nm CMOS ”, in 2018 IEEE MTT-S Int. Microw. Symp., June 2018, pp. 1491-1494.
[12] Y.-C. Chen ,Y. Wang , C.-C. Chiong and H. Wang, “An ultra-broadband low noise amplifier in GaAs 0.1-μm pHEMT process for radio astronomy application,” IEEE Int. Symp. on Radio-Frequency Int. Tech.(RFIT) , 2017, pp.80-82.
[13] J. Hu , K. Ma , S. Mou and F. Meng, “Analysis and Design of a 0.1-23 GHz LNA MMIC Using Frequency-Dependent Feedback,”IEEE Trans. Circuits and Syst. II, Exp. Briefs, Early Access, 2019.
[14] B. Razavi, RF Microelectronics, 2nd ed. Upper Saddle River, NJ: Prentice Hall, 2011.
[15] M. Daoud , R. Aloulou , H. Mnif , M. Ghorbel, “Inductive Degeneration Low Noise Amplifier for IR-UWB Receiver for Biomedical Implant,” IEEE 27th Int. Conf. on Micro. (ICM), Dec. 2015, pp. 95–98.
[16] X. A. Nghiem, J. Guan, and R. Negra, “Design of a broadband three-way sequential Doherty power amplifier for modern wireless communications,” in IEEE MTT-S Int. Microw. Symp. Dig., 2014 pp. 1–4.
[17] H.-W. Lei ; Y. Wang ; C.-C. Chiong and H. Wang,“A 2.5-31 GHz High Gain LNA in 0.15-µm GaAs pHEMT for Radio Astronomical Application”, IEEE Asia-Pacific Microw. Conf., Nov. 2018, pp. 228-230.
[18] T. Y .Yang, Li-C Pai, and H .K . Chiou, “A compact Ka-Band Power Amplifier using finite-ground coplanar waveguide design” in IEEE Asia-Pacific Microw. Conf., 2005.
[19] J. H. Tsai and T. W. Huang, "A 38-46 GHz MMIC Doherty power amplifier using post-distortion linearization," in IEEE Microw. Wireless Compon. Lett. vol. 17, no. 5, pp. 388-390, May 2007.
[20] A. Agah, et. al., "Active Millimeter-Wave Phase-Shift Doherty Power Amplifier in 45-nm SOI CMOS," IEEE J. Solid-State Circuits, vol. 48, no. 10, pp. 2338- 2350, Oct. 2013.
[21] S. Hu, F. Wang, and H. Wang, “A 28 GHz/37 GHz/39 GHz multiband linear Doherty power amplifier for 5G massive MIMO applications,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2017, pp. 32–33.
[22] D. Kim, H. Park, S. Eom, J. Jeong, H. Cha, and K. Seo, "KaBand MMIC Using AlGaN/GaN-on-Si With Recessed High-k Dual MIS Structure," IEEE Electron Device Letters, vol. 39, no. 7, pp. 995-998, 2018.
[23] R. G. Freitag, “A Unified Analysis of MMIC Power Amplifier Stability”, MlT-S Int.l Microw. Symp. Dig. 1992.
[24] Y. C. Lee and C. S. Pard, “17–36 GHz broadband PHEMT MMIC power amplifier for point-to-multipoint applications,” in Proc. Int.Conf. Solid-State and Integrated Circuits, 2001, vol. 2, pp. 1320–1323.
[25] Y. Sasaki, H. Kurusu, H. Hoshi, T. Hisakaa, and Y. Mitsui, “20–30GHz broadband MMIC power amplifiers with compact flat gain PHEMT cells,” in IEEE Int. Micro. Symp. Dig., 2001, vol. 2, pp.1067–1070.
[26] Y.A. Lin ; J.R. Ji ; T.H. Chien ; H.Y. Chang and Yu-Chi Wang, “A Ka-band 25-dBm output power high efficiency monolithic Doherty power amplifier in 0.15-μm GaAs E-mode pHEMT process”, IEEE Asia-Pacific Microw. Conf, pp. 984-987, 2017.
[27] H.Yu.Lin and W.T.Li, “A Ka-Band Power Amplifier with Phase Compensation Technique Applied to 5G Phased Array”, IEEE Asia-Pacific Microw. Conf, pp. 61-63, 2018.
[28] B. Park et al., "Highly Linear mm-Wave CMOS Power Amplifier," IEEE Trans. Microw. Theory Tech., vol. 64, no. 12, pp. 4535-4544, Dec. 2016
[29] S. Shakib, H. C. Park, J. Dunworth, V. Aparin and K. Entesari, "20.6 A 28GHz efficient linear power amplifier for 5G phased arrays in 28nm bulk CMOS," IEEE Int. Solid-State Circuits Conf. (ISSCC), San Francisco, CA, 2016, pp. 352-353.
[30] P. C. Huang, Z. M. Tsai, K. Y. Lin, and H. Wang, “17–35 GHz broadband, high efficiency pHEMT power amplifier using synthesized transformer matching technique,” in IEEE MTT, 2012, vol. 60, pp. 112-119.
[31] A. Bessemoulin, H. Massler, A. Hulsmann and M. Schlechtweg” Ka-band high-power and driver MMIC amplifiers using GaAs PHEMTs and coplanar waveguides”, IEEE Microw. and Guided Wave Lett., Dec. 2000.
[32] D. P. Nguyen, T. Pham, B. L. Pham, and A.-V. Pham, “A high efficiency high power density harmonic-tuned Ka-band stacked-FET GaAs power amplifier,” in Proc. IEEE Compound Semiconductor Integr. Circuit Symp. (CSICS), Oct. 2016, pp. 1–4.
[33] D. P. Nguyen, A. Pham, "An ultra compact watt-level Ka-band stacked-FET power amplifier," IEEE Microw. Wireless Comp. Lett., vol.26, no.7, pp. 516-518, July 2016.
[34] C. W. Kuo, H. K. Chiou and H. Y. Chung, "An 18 to 33 GHz Fully-Integrated Darlington Power Amplifier WithGuanella-Type Transmission-Line Transformers in 0.18 m CMOS Technology," IEEE Microw. Wireless Compon. Lett., vol. 23, no. 12, pp. 668-670, Dec. 2013
[35] M. Balducci, S. Chartier and H. Schumacher, "A Ka-band low power and high-efficiency differential power amplifier in 0.25-µm BiCMOS”, in INMMIC, Graz, 2017, pp. 1-3.
[36] C. H. Tsay, J. C. Kao, K. Y. Kao and K. Y. Lin, "A 27–34 GHz CMOS medium power amplifier with a flat power performance," in IEEE Asia-Pacific Microw. Conf, Kaohsiung, 2012, pp. 1-3
[37] A.Vasylyev, P. Weger, and W. Simburger, “Ultra-broadband 20.5–31 GHz monolithically-integrated CMOS power amplifier,” Electron. Lett., vol. 41, no. 23, pp. 1281–1282, Nov. 2005.
[38] S. Li, D. Fritsche, C. Carta and F. Ellinger, "Design and characterization of a 12–40 GHz power amplifier in SiGe technology," 2018 IEEE Topical Conf. on RF/Microw. Power Amplifiers for Radio and Wireless Applications (PAWR), Anaheim, CA, 2018, pp. 23-25.
[39] J.-W. Lee and S.-M. Heo, “A 27 GHz, 14 dBm CMOS power amplifier using 0.18 common-source MOSFETs,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 11, pp. 755–757, Nov. 2008.
[40] 黃暄尹「使用T模型匹配網路之寬頻氮化鎵功率放大器暨金氧半場效應電晶體功率放大器設計及砷化鎵低雜訊降頻器之研製」,國立中央大學,碩士論文,民國 106年。
[41] 簡子涵「W頻帶40奈米金氧半場效應電晶體低雜訊放大器暨Ka頻帶砷化鎵功率放大器之研製」,國立中央大學,碩士論文,民國 107年。
[42] C.-H. Wu, and N.-Y. Wu, “Design of low power up-conversion self-oscillating mixer,” in Proc. China-Japan Joint Microw. Conference, (CJMW) pp. 1–4, Apr. 2011
[43] C.-H. Wu, and G.-X. Jian, “Design of up conversion mixer with enhanced transconductance stage and low power consumption oscillator,” in Proc. Int. Conf. on Signals and Electronic Systems, pp. 229–232, Sept. 2010.
[44] K. W. Kobayashi, A. K. Oki, D. K. Umemoto, T. R. Block, and D. C. Streit, “A novel self-oscillating HEMT–HBT cascode VCO-mixer using an active tunable inductor,” IEEE J. Solid-State Circuits, vol. 33, no. 6, pp. 1231–1240, Jun. 1998.
[45] J.-Y. Kim; W.-Y. Choi, “30 GHz CMOS self-oscillating mixer for self-heterodyne receiver application,” IEEE Microw. Compon. Lett., vol. 20, no. 6, pp. 334–336, June. 2010.
[46] F. Starzer, P.-H. Forstner, L. Maurer, and A. Stelzer, “A 21-GHz self-oscillating down-converter mixer,” 12th Topical Meeting on Silicon Monolithic Integrated Circuits in RF systems (SiRF), Jan. 2012, pp. 93–96.
[47] Z. Li ; J. Cao ; Q. Li and Z. Wang, “A wideband Ka-band receiver front-end in 90-nm CMOS technology,” IEEE European Microw. Integrated Circuit Conf. , pp. 5–8, Dec. 2013.
[48] S. S. H. Hsu ; P.-Yi Wang ; P.-Ch. Su ; M.-C. Chou ; Y.-C. Chang and Da-C. Chang, “Design of Ku/Ka band down-converter front-end for digital broadcast satellite receivers,” IEEE Int.Wireless Symp. (IWS). , pp. 1–4, Jul. 2015.
[49] M. Vidojkovic ; V. Vidojkovic ; M. A. T. Sanduleanu ; J. v. d. Tang ; P. B. and A.r v. Roermund, “A 1.2V inductorless receiver front-end for multi-standard wireless applications,” IEEE Radio and Wireless Symp.. , pp. 41–44, Mar. 2008.
[50] Y-Chen;Z.-I Yu ; C.-Y. Huang ; K.-H. Hsieh and R.-Hu, “Design of 18-26 Receiver with Wideband RF,LO and IF in 0.15-μm GaAs pHEMT process”, IEEE Asia-Pacific Microw. Conf, IEEE, pp. 1250-1253, 2017.
[51] K.-C. Lin ; H.-K. Chiou ; K.-H. Chien ; T.-Y. Yang ; P.-C. Wu ; C.-L. Ko and Y.-Z. Juang, “A 4.2-mW 6-dB Gain 5–65-GHz Gate-Pumped Down-Conversion Mixer Using Darlington Cell for 60-GHz CMOS Receiver,” IEEE Trans.Microw. Theory Techn, vol. 61, no. 4, pp. 1516–1522, Mar. 2013.
[52] K. Kanaya , K. Kawakami , T. Hisaka , T. Ishikawa , and S. Sakamoto, “A 94 GHz high performance quadruple subharmonic mixer MMIC,” IEEE Trans.Microw. Theory Techn, pp. 1249–1252, Aug. 2002.
[53] D. Dawn, S. Sarkar, P. Sen, B. Perumana, D. Yeh, S. Pinel, and J. Laskar, “17-dB-Gain CMOS Power Amplifier at 60GHz”, IEEE Int. Microw. Symp. Dig., pp 859-862, Jun. 2008.
[54] T. Yao, et al., “Algorithmic Design of CMOS LNAs and PAs for 60-GHz Radio”, IEEE J. Solid-State Circuits, vol. 42, No. 5, pp. 1044-1057, May 2007.
[55] D. Chowdhury, et al., “A 60GHz 1V +12.3dBm Transformer-Coupled Wideband PA in 90nm CMOS”, ISSCC Dig. Tech Papers, pp 560-561, Feb., 2008.
[56] J.-J. Lin, K.-H. To, H. D., K. B., M. M., Huang W.M., “Power Amplifier for 77-GHz Automotive Radar in 90-nm LP CMOS Technology,” IEEE Microw. Wireless Compon Lett, pp. 292 – 294, 2010.
[57] J.-H. Tsai, Y.-L. Lee, T.-W. Huang, C.-M. Yu and J. G.J.Chern “A 90-nm CMOS broadband and miniature Q-band balanced medium power amplifier,” 2007 IEEE MTT-S Int. Microw. Symp. Dig, pp.1129–1132. 2007.
[58] 陳穎「微波低功耗低雜訊放大器與毫米波Doherty功率放大器的設計」,國立台灣大學,碩士論文,民國 108年
[59] 穩懋PL15-12 0.15μm InGaAs pHEMT Power Device Layout Design Manual
[60] 穩懋PP10-10 0.1μm InGaAs pHEMT Power Device Layout Design Manual
[61] 穩懋PE15-00 0.15μm InGaAs pHEMT Power Device Layout Design Manual
|