參考文獻 |
Alidoost, F., Sharifi, M.A., & Stein, A. (2015). Region- and pixel-based image fusion for disaggregation of actual evapotranspiration. International Journal of Image and Data Fusion. doi:10.1080/19479832.2015.1055834
Allen, R.G., Pereira, L.S., Raes, D., & Smith, M. (1998). Crop evapotranspiration (guidelines for computing crop water requirements). FAO Irrigation and Drainage Papers – 56. In. Rome: FAO – Food and Agriculture Organization of the Unites Nations.
Allen, R., Tasumi, M., Trezza, R., Waters R., & Bastiaansses, W. (2002). SEBAL (surface energy balance algorithms for land). Advance Training and Users Manual-Idaho Implementation, Version, vol. 1, pp. 97, 2002.
Anderson, M.C., Kustas, W.P., Norman, J.M., Hain, C.R., Mecikalski, J.R., Schultz, L., Dugo, M.P.G., Cammalleri, C., d’Urso, G., Pimstein, A., & Gao, F. (2011). Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery. Hydrology and Earth System Science. 15, 223-239.
Artis, D.A. & Carnahan, W.A. (1982). Survey of emissivity variability in thermography of urban areas. Remote Sensing of Environment. 12, 313-329.
Berg, A., Lintner B.R., Findell, K.L., Malyshev, S., Loikith, P.C., & Gentine, P. (2014). Impact of soil moisture-atmosphere interaction on surface temperature distribution. Journal of Climate. 27, 7976-7993, doi: 10.1175/JCLI-D-13-00591.1
Beg, A.A.F., Al-Sulttani, A.H., Ochtyra, A., Jarocińska, A., & Marcinkowska, A. (2018). Estimation of evapotranspiration using SEBAL algorithm and Landsat-8 data–a case study: Tatra Mountains Region. Journal of Geological Resource and Engineering. 6, 257-270, doi:10.17265/2328-2193/2016.06.002
Cammalleri, C., Anderson, M.C., Gao, F., Hain, C.R., & Kusts, W.P. (2013). A data fusion approach for mapping daily evapotranspiration at field scale. Water Resources Research. 49, 4672-4686.
Chirouze, J., Boulet, G., Jarlan, L., Fieuzal, R., Rodriguez, J.C., Ezzahar, J., Er-Raki, S., Bigeard, G., Merlin, O., Garatuza-Payan, J., Watts, C., & Chehbouni. (2014). Intercomparison of four remote-sensing-based energy balance methods to retrieve surface evapotranspiration and water stress of irrigated fields in semi-arid climate. Hydrology and Earth System Sciences. 18, 1165-1188.
Ershadi, A. (2014). Evapotranspiration: application, scaling and uncertainty. Doctoral dissertation, University of New South Wales, Sydney, Australia.
Farhanj, F. & Akhoondzadeh, M. (2017). Fusion of Landsat-8 thermal infrared and visible bands with multi-resolution analysis contourlet methods. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science. Vol XLII-4/W4.
Gao, F., Masek, J., Schwaller, M., & Hall, F. (2006). On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance. IEEE Transactions on Geoscience and Remote Sensing. 44, 2207-2218.
Gebler, S., Franssen, H.j.H., Pütz, H., Post, H., Schmidt, M., & Vereecken, H. (2015). Actual evapotranspiration and precipitation measured by lysimeters: a comparison with eddy covariance and tipping bucket. Hydrology and Earth System Sciences. 19, 2145-2161.
Huang, C.Y., Ho, H.C., & Lin, T.H. (2018). Improving the image fusion procedure for high-spatiotemporal aerosol optical depth retrieval: a case study of urban area in Taiwan. Journal of Applied Remote Sensing. 12(4), doi: 10.1117/1.JRS.12.042605
Jurgens, C. (1997). The modified normalized difference vegetation index (mNDVI) a new index to determine frost damages in agriculture based on Landsat TM data. International Journal of Remote Sensing. 18:17, 3583-3594, doi:10.1080/014311697216810
Ke, Y., Im, J., Park, S., & Gong, H. (2016). Downscaling of MODIS one-kilometer evapotranspiration using Landsat-8 data and machine learning approaches. Remote Sensing. 8, 215, doi:10.3390/rs803021
Killic, A., Allen, R., Trezza, R., Ratcliffe, I., Kamble, B., Robison, C., & Ozturk, D. (2016). Sensitivity of evapotranspiration retrievals from METRIC processing algorithm to improved radiometric resolution of Landsat 8 thermal data and to calibration bias in Landsat-7 and 8 surface temperature. Remote Sensing of Environment. 185, 198-209.
Kumar, R., Shambhavi, S., Kumar, R., Singh, Y.K., & Rawat, K.S. (2013). Evapotranspiration mapping for agricultural water management: An overview. Journal of Applied and Natural Science. 5(2), 522-534.
Li, S. & Jiang, G.M. (2018). Land surface temperature retrieval from Landsat-8 data with the generalized split-window algorithm. IEEE. 6, 18149-18162, doi::10.1109/ACCESS.2018.2818741
Meng, X.H., Evans, J.P., & McCabe, M.F. (2014). The impact of observed vegetation changes on land-atmosphere feedbacks during drought. Journal of Hydrometeorology. 15, 759-776, doi: 10.1175/JHM-D-13-0130.1
Rosas, J., Houborg, R., & McCabe, M.F. (2017). Sensitivity of Landsat 8 surface temperature estimates to atmospheric profile data: a study using MODTRAN in dryland irrigated systems. Remote Sensing. 9, 988, doi:10.3390/rs9100988
Rouse, J.W., Jr., Haas, R.H., Schell, J.A., Deering, D.W., & Harlan, J.C. (1974). Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. NASA/GSFC type III final report: Greenbelt, Maryland, NASA, 371 p.
Rwasoka, D.T., Gumindoga, W., & Gwenzi, J. (2011). Estimation of actual evapotranspiration using the surface energy balance system (SEBS) algorithm in the Upper Manyame catchment in Zimbabwe. Physics and Chemistry of the Earth. 36, 736-746.
Sattari, F., Hashim, M., & Pour, A.B. (2018). Thermal sharpening of land surface temperature maps based on the impervious surface index with the TsHARP method to ASTER satellite data: A case study from the metropolitan Kuala Lumpur, Malaysia. Measurement. 125, 262-278.
Schneider, S.H. (1989). The greenhouse effect: science and policy. Science, vol, 243.
Semmens, K.A., Anderson, M.C., Kustas, W.P., Gao, F., Alfieri, J.G., McKee, L., Prueger, J.H., Hain, C.R., Cammalleri, C., Yang, Y., Xia, T., Sanchez, L., Alsina, M.M., & Velez, M. (2015). Monitoring daily evapotranspiration over two California vineyards using Landsat 8 in a multi-sensor data fusion approach. Remote Sensing of Environment. 0034-4257.
Senay, G.B., Bohms, S., Singh, R.K., Gowda, P.H., Velpuri, N.M., Alemu, H., & Verdin, J.P. (2013). Operational evapotranspiration mapping using remote sensing and weather datasets: a new parameterization for the SSEB approach. Journal of the American Water Resources Association. 49, 577-591.
Shoko, C., Dube, T., Sibanda, & M., Adelabu, S. (2015). Applying the surface energy balance system (SEBS) remote sensing model to estimate spatial variations in evapotranspiration in Southern Zimbabwe. Transactions of the Royal Society of South Africa. 70, 47-55.
Sobrino, J.A., Jiménez-Muñoz, J.C., & Paolini, L. (2004). Land surface temperature retrieval from Landsat TM 5. Remote Sensing of Environment. 90, 434-440.
Su, Z. (2002). The surface energy balance system (SEBS) for estimation of turbulent heat fluxes. Hydrology and Earth System Sciences, 6(1), 85-99.
Sun, Z., Wei, B., Su, W., Shen, W., Wang, C., You, D., & Liu, Z. (2011). Evapotranspiration estimation based on the SEBAL model in the Nansi Lake Wetland of China. Mathematical and Computer Modelling. 64, 1086-1092.
Trezza, R., Allen, R.G., & Tasumi, M. (2013). Estimation of actual evapotranspiration along the Middle Rio Grande of New Mexico using MODIS and Landsat imagery with the METRIC model. Remote Sensing. 5, 5397-5423, doi:10.3390/rs5105397
U.S. Geological Survey. (2019). Landsat 8 (L8) data users handbook.
Wang, F., Qin, Z., Li, W., Song, C., Karnieli, A., & Zhao, S. (2014). An efficient approach for pixel decomposition to increase the spatial resolution of land surface temperature images from MODIS thermal infrared band data. Sensors. 15, 304-330.
Yang, Y., Anderson, M.C., Gao, F., Hain, C.R., Semmens, K.A., Kustas, W.P., Noormets, A., Wyne, R.H., Thomas, V.A., & Sun, G. (2017). Daily Landsat-scale evapotranspiration estimation over a forested landscape in North Carolina, USA, using multi-satellite data fusion. Hydrology and Earth System Science. 21, 1017-103.
Zheng, H., Wang, Q., Zhu, X., Li, Y., & Yu, G. (2014). Hysteresis responses of evapotranspiration to meteorological factors at a diel timescale: patterns and causes. Plos One. v.9(6), e98857.
Zhu, X.L., Chen, J., Gao, F., Chen, X.H., & Masek, J.G. (2010). An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. Remote Sensing of Environment. 114, 2610-2623.
Zitouna-Chebbi, R., Prévot, L., Chakhar, A., Abdallah, M.M.B., & Jacob, F. (2018). Observing actual evapotranspiration from flux tower eddy covariance measurements within a hilly watershed: case study of the Kamech site, Cap Bon Peninsula, Tunisia. J. Atmosphere. 9, 68, doi:10.3390/atmos9020068
|