摘要(英) |
In mathematics education,the probability course takes an important place. In our national syllabus of Grade 1-9 Curriculum Guidelines, probability courses have always been scheduled for the second semester of the ninth grade. But the problems of probability is everywhere in daily life, and they play a very important role in mathematics education. It’s too late to study in the ninth grade, and researchers hope to explore the possibility of learning ahead. We also wish to make the concept of spontaneity more complete with life and learning, and to show the true meaning of implementing mathematics as a language.
This study first explores the situation of the seventh grade students′ chances of spontaneous conception before they have accepted the formal probability course. We found that the concept of intuitive probability has been formed. However, because the skills of proportion required for the probability of operation is not completed in the seventh grade, this study explores the effectiveness of the expedition course in the eighth grade by experimental teaching activities.Therefore, the three research questions are: 1) Through the probabilistic course teaching, do eighth grade students have the ability to learn the national probability course? 2) If the tree diagram is used as the only method of probability teaching, is the probability learning effect improved? 3) What is the difference in learning outcomes between the eighth grade and the ninth grade after the probability teaching?
The samples of this study has about 350 students from four schools and are investigated by three tests, namely, "Pre-experience Diagnosis of Probability" and posttest and retentive test of the probability. The research tools are divided into four parts, which are pre-experience diagnosis of probability, teaching plan of probability, posttest and retentive test of the probability. The study used independent and paired sample t-tests and single-variant analysis (ANOVA) to analyze the significance of the scores of each test and to explore the correct answer rate for each test.
According to the research results, first, students have a certain concept of subjective probability and classical probability before they have taken the course of the probability. Second, according to the Grade 1-9 Curriculum Guidelines of the national primary and secondary schools, there is no difference in the learning outcomes of the eighth and nineth grade students on probability materials. Third, after the eighth grade students have experienced the tree diagram teaching, their probability learning has achieved results. Finally, basing on the research results, some suggestions are made in the future probability course.
|
參考文獻 |
一、中文部分
丁村成 (2008)。走一趟高中機率教學之旅。數學傳播,32(4),33-50。
呂溪木 (1986)。變遷時代中我國數學課程的發展。臺灣省國民學校教師研習
會三十年紀念專刊。新北市:台灣省國民學校教師研習會。
呂溪木 (2007)。民國 75年之前我國數學課程演變。論文發表於「吳大猷先生
百歲冥誕科學教育學術研討會~我國近五十年之科學教育發展」研討會,
臺灣師範大科學教育所,臺北市。
周祝瑛 (2003)。台灣教育改革之研究。論文發表於「民辦教育」研討會。上
海華東師範大學。取自http://www3.nccu.edu.tw/~iaezcpc/
C-%20The%20research%20of%20taiwan%20education%20revolution%201.htm
林以專 (2009)。數獨遊戲對我國國中學生機率樣本空間之影響。國立新竹教育大學碩士論文。
林陳涌等人(2011)。國際數學與科學教育成就趨勢調查 2011國家報告。取自https://tilssc.naer.edu.tw/timss
陳宜良、單維彰、洪萬生、袁媛(2005)。中小學數學科課程綱要評估與發展研究(節錄本)。
陳玟樺 (2017)。民國五十至八十年代(1961-2000年)數學課程改革之探究。教
育部普通高級中學課程 數學學科中心 (臺北市立建國高級中學)。
翁秉仁 (2016)。小朋友適合學機率嗎?科學人雜誌,170。取自http://sa.ylib.com/
MagArticle.aspx?Unit=columns&id=3058
教育部 (1971)。高中數學課程標準。臺北市:正中書局。
教育部 (1975)。國民小學課程標準。臺北市:正中書局。
教育部 (2008)。國民中小學九年一貫課程綱要數習領域。取自http://
teach.eje.edu.tw/data/files/class_rules/math.pdf
教育部 (2014)。十二年國民基本教育課程綱要總綱。取自http://www.naer.
edu.tw/ezfiles/0/1000/attach/87/pta_5320_2729842_56626.pdf
梁淑坤 (1994)。「擬題」的研究及其在課程的角色。國民小學數學科新課程概說
(低年級)。新北市:台灣省國民學校教師研習會。
許哲毓、單維彰、劉柏伸 (2016)。樹狀圖在機率教學的應用-臺灣與英國教科書
之比較。第四屆師資培育國際學術研討會,國立臺灣大學
許哲毓、單維彰(2018)。數學「不確定性」教材與評量之分析規準。論文發表於台灣教育評論月刊,頁170-177。
張吉逸 (2016)。從自由擬題探究九年級學生的機率思維發展。國立中央大學碩士論文。
國家教育研究院(2018)。十二年國民基本教育課程綱要國民中小學暨普通型高級中等學校-數學領域。取自https://www.naer.edu.tw/files/15-1000-14987,c639-1.php
單維彰、陳斐卿、許哲毓 (2018)。以學前診測與自由擬題探討九年級學生的自發性機率
概念。科技部專題研究成果報告(編號:NSC-104-2511-S-008-002-MY2)。
甯平獻 (2010)。數學教材教法。臺北市:五南。
劉秋木 (1996)。 國小數學科教學研究。臺北市:五南。
鄭章華、單維彰 (2015)。素養導向之數學教材初探。邁向十二年國教新課綱的
第一哩路:從課綱轉化到學校教育的系統性變革學術研討會,國家教育研究
院。
二、英文部分
Bognar & Nemetz(1977). On the teaching of probability at secondary level.
Educational Studies in Mathematics, 8 , 399-404.
Charles,R . I., & Silver, E. A. (Eds.). (1988). Thet eachinga nd assessing of
mathematical problem solving.Reston, VA: National Council of Teachers of
Mathematics.
Ellerton, N. F. (1986). Children′s made-up mathematics problems: a new perspective
on talented mathematicians. Educational Studies in Mathematics, 17(3),
261-271.
Hart, K. (Ed.). (1981). Children′s understanding of mathematics: 11-16.
London: John Murray.
Hashimotto, Y. (1987). Classroom parctice of problem solving in Japanese elementary
schools. In J. P. Becker & T. Miwa (Eds), Proceedings of the U. S.-Japan
seminar on mathematical problem solving (pp. 94-119). Carbon dale, IL:
Southern Illinois University.
Jones, G. A., Thornton, C. A., Langrall, C. W., & Tarr, J. E. (1999). Understanding
students′ probabilistic reasoning. In L. V. Stiff, & F. R. Curcio (Eds.),
Developing mathematical reasoning in Grades K-12: 1999 Yearbook (pp.146-
155). Reston, VA: National Council of Teachers of Mathematics.
Li, J. (2000)., Chinese students understanding of probability, Unpublished doctoral
dissertation,National Institute of Education. Nanyang Technological University,
Singapore, 2000.
NCTM (1989). Curriculum and Evaluation Standards for School Mathematics
National Council of Teachers of Mathematics Commission on Standards for
School Mathematics. Reston, VA: NCTM
NCTM (2000). National Council of Teachers of Mathematics (2000). Principles and
standards for school mathematics. Reston, VA: NCTM
Piaget, J., & Inhelder, B. (1975). The origin of the idea of chance in children (L. J.
Leake & P. D. Burrell & H. D. Fischbein, Trans.). London: Routledge & Kegan
Paul. (Original work published 1951)
Reitman, W.(1965). Cognition and thought. New York:Wiley.
Shaughnessy, J. M. (1992). Research in probability and statistics: Reflections and
directions. In D. A. Grouws (Ed.), Handbook of research on mathematics
teaching and learning (pp. 465-494). New York: National Council of Teachers
of Mathematics and MacMillan.
Mullis, I. V. S., Martin, M. O., Foy, P., & Hooper, M. (2016). TIMSS 2015 International Results in Mathematics. Retrieved from Boston College,
TIMSS & PIRLS International Study Center website:
http://timssandpirls.bc.edu/timss2015/international-results/
Writz, R. W. & Kahn, E. (1982). Another look at application in elementary school
mathematics. Arithmetic Teacher, 30,21-25.
|