博碩士論文 106521091 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:131 、訪客IP:18.188.219.131
姓名 蕭國彬(Guo-Bin Xioa)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 深度學習於腦波情緒辨識研究
相關論文
★ 使用梳狀濾波器於相位編碼之穩態視覺誘發電位腦波人機介面★ 應用電激發光元件於穩態視覺誘發電位之腦波人機介面判斷
★ 智慧型手機之即時生理顯示裝置研製★ 多頻相位編碼之閃光視覺誘發電位驅動大腦人機介面
★ 以經驗模態分解法分析穩態視覺誘發電位之大腦人機界面★ 利用經驗模態分解法萃取聽覺誘發腦磁波訊號
★ 明暗閃爍視覺誘發電位於遙控器之應用★ 使用整體經驗模態分解法進行穩態視覺誘發電位腦波遙控車即時控制
★ 使用模糊理論於穩態視覺誘發之腦波人機介面判斷★ 利用正向模型設計空間濾波器應用於視覺誘發電位之大腦人機介面之雜訊消除
★ 智慧型心電圖遠端監控系統★ 使用隱馬可夫模型於穩態視覺誘發之腦波人機介面判斷 與其腦波控制遙控車應用
★ 使用類神經網路於肢體肌電訊號進行人體關節角度預測★ 使用等階集合法與影像不均勻度修正於手指靜脈血管影像切割
★ 應用小波編碼於多通道生理訊號傳輸★ 結合高斯混合模型與最大期望值方法於相位編碼視覺腦波人機介面之目標偵測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 隨著全球腦科學研究的發展,大腦在應用技術上推陳出新,腦電波的發展提供了有效的工具用於揭開人腦的神祕面紗。「情緒」從古至今都是左右決策、影響勝敗的關鍵。本研究以國科會委任台灣大學執行的情緒計劃所提供的腦波誘發資料,和實驗室自製的8通道腦波機及乾式電極當作實驗設備,蒐集所需要的情緒腦波的訓練資料,從腦波中找出情緒在自主程度暨正負向性腦波的特殊特徵驗證實驗確效性,由於不同年齡、不同性別、不同慣用手上,大腦在不同區塊活躍度有所不同,藉由深度學習來訓練一組適合各年齡層,不同性別都適用的人工智慧模神經網路模型,以學校師生男女共15人的腦波當成訓練資料,給予每位受試者觀看20分鐘的腦波刺激材料,同時利用專門為深度學習打造,具備有GPU模組的TX2進行有效率的深度學習,以雙線程為主軸,當在接收腦波的同時,即時將腦波經處理置入訓練好的神經網路模型,快速辨識受測者當下的情緒在自主程度、正負向性的情緒指標。在準確率方面,正負向性準確率經交叉驗證後的準確度達到81.48%,自主程度準確度達到74.18%,透過此8個通道腦波規格及創新的資料預處理方法來達成過去必須要32通道或是64通道所訓練出來的準確率及成果,完成在應用上更具輕便性以及輕巧性的系統,致力於減少通道數及系統的精簡性。在應用層面,為實體化辨識的情緒指標,引進虛擬實境做為媒介跟時代接軌,透過立體環境模擬遠端視訊,同時讓另一端知道自己真實的情緒狀態,將冷冰冰的理論實現到現代應用設備上。
摘要(英) With the developments of research in brain science and the novel technologies of brain-related applications technology, electroencephalography (EEG) provides an effective tool to unveil the mystery of human brain. Especially, "emotion" is the most attractive topic which can influence decision and be the key to victory or defeat. In this dissertation, emotion stimulation materials are provided by the emotional plan of National Science Council, which is implemented by the National Taiwan University. Eight-channel EEG machine and high-sensitivity dry electrodes are used as the experimental equipment to collect the emotional EEG training data. Human emotions were represented in valence and dominance domains. The relations between EEG temporal-frequency features and emotion markers verified the the correctness of the experiment. Since brain activities are different across individuals owing to their ages and habitual hand, neural network is a suitable choice for our emotion classification study. In the study, fifteen subjects were recruited to view a twenty-minute emotion stimulation material. EEG data measured from the fifteen subjects were used as training data for deep-learning neural network. After network training, real-time recognition of subjects’ emotions were performed on TX2 platform whose GPU module was configured by the pre-trained Deep Learning neural network. In our system, simultaneous EEG data recording and real-time emotion recognition was available with the use of double-threading system. The accuracies of valence and dominance indexes have achieved 81.48% and 74.18%, respectively. The research results of our eight-channel EEG study in this thesis have attained comparable results compared to other previous literatures which utilized 32- or 64-channel EEG system in emotion studies. In addition, we also introduced virtual reality (VR) to integrate with our proposed eight-channel EEG emotion detection system. The VR-EEG emotion detection system has already implemented in 3D environment and combined with social communication software which can achieve a variety of entertainment applications in future studies.
關鍵字(中) ★ 深度學習
★ 腦波
★ 情緒辨識
★ 人工智慧
★ 虛擬實境
關鍵字(英) ★ Deep Learning
★ Electroencephalography(EEG)
★ emotional recognition
★ artificial intelligence
★ virtual reality
論文目次 目錄
摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 viii
第一章 緒論 1
1-1 前言及研究背景 1
1-1-1 腦波的形成 1
1-1-2 腦波基本波段 2
1-1-3 腦區域及功能 3
1-1-4 情緒的三象限 4
1-2 文獻回顧 4
1-2-1 CNN情緒辨識 5
1-2-2 RNN情緒辨識 6
1-3 研究動機與目的 8
1-4 論文架構 9
第二章 韌體及硬體介紹 10
2-1 韌體介紹 10
2-1-1 巴特沃斯濾帶通濾器(Butterworth filter) 10
2-1-2 小波轉換(Wavelet transform) 11
2-2 硬體介紹 14
2-2-1 八通道腦波機 14
2-2-2 乾式電極及腦波帽 16
2-2-3 NVIDIA Jetson TX2 17
2-2-4 虛擬實境(HTC-Vive Pro) 18
第三章 實驗設計及方法 19
3-1 實驗引言 19
3-2 腦波誘發素材的挑選 21
3-2-1 蒐集腦波資料切裁 23
3-3 腦波預處理訓練腦波模型 24
3-3-1 濾波及除前端擬波 25
3-3-2 訓練資料的堆疊 26
3-3-3 深度學習- LSTM 27
3-3-4 綜合架構與輸入的網路型態 28
第四章 實驗結果與應用 31
4-1 腦波在各情緒時頻 31
4-2 深度學習準確率結果 34
4-2-1 10 k-fold交叉驗證 34
4-2-2 SVM、LSTM以及CNN成果 34
4-3 虛擬實境映射情緒 39
4-3-1 即時腦波情緒預測 39
4-3-2 遠端視訊模擬系統 41
第五章 結論與未來展望 44
第六章 參考文獻 45
參考文獻 [1] J.-S. Lee, A. Yazdani, T. Ebrahimi, T. Pun, A.
Nijholt, I. Patras, S. Koelstra, C. Muehl, M. Soleymani,IEEE Transaction on Affective Computing, under review "DEAP: A Database for Emotion Analysis using Physiological Signals",
[2] Franc,ois Chollet et al. Keras. https://github.com/fchollet/keras, 2015.
[3] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer. "Automatic differentiation in pytorch". In NIPS Workshop, 2017
[4] Y. LeCun. B. Boser. J. S. Denker. D. Henderson. R. E. Howard. W. Hubbard. L. D. Jackel. "Backpropagation Applied to Handwritten Zip Code. Recognition. "
[5] M.WGardnera, S.RDorlinga "Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences "
[6] Samarth Tripathi, Shrinivas Acharya, Ranti Dev Sharma, Sudhanshu Mittal, and Samit Bhattacharya, “Using deep and convolutional neural networks for accurate emotion classification on deap dataset.,” in AAAI, 2017, pp. 4746–4752.
[7] Andrew Senior, Françoise Beaufays "Long Short-Term Memory Recurrent Neural Network Architectures for Large Scale Acoustic Modeling. Hasim Sak "
[8] Kohavi, R. A "Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection" (1995) .
[9] S. Alhagry, A. A. Fahmy, and R. A. El-Khoribi, “Emotion recognition based on eeg using lstm recurrent neural network,” Emotion, vol. 8, no. 10, 2017.
[10] Van Der Walt, S. Chris Colbert, Gaël Varoquaux "The NumPy array: a structure for efficient numerical computation,Stefan"
[11] https://github.com/jbmouret/matplotlib_for_papers
[12] A. Grossman and J. Morlet (1984) Decomposition of hardy functions into square integrable wavelets of constant shape, SIAM J. Appl. Math., vol. 15, pp. 723-736
[13] SpaceYasar Dasdemir1, Esen Yildirim ,Serdar Yildirim" Emotion Analysis using Different Stimuli with EEG Signals in Emotional "

[14] 情緒標準刺激與反應常模之基礎研究-子計畫「情緒短片」 共同主持人:謝淑 蘭 教授、孫蒨如教授、翁嘉英教授

[15] Jeong-Hoon, ShinDae-Hyeon Park, Analysis for Characteristics of Electroencephalogram (EEG) and Influence of Environmental Factors According to Emotional Changes
[16] Rich Caruana, Steve Lawrence, Lee Giles,Overfitting in Neural Nets: Backpropagation, Conjugate Gradient, and Early Stopping
[17] Chih-Wei Hsu, Chih-Chung Chang, and Chih-Jen Lin, A Practical Guide to Support Vector Classification
[18] K. Rustan M. Leino 0 and Peter Muller, A basis for verifying multi-threaded programs
[19] https://www.jetsonhacks.com/nvidia-jetson-tx2-j21-header-pinout/

[20] Dennis J McFarland1 , Muhammad A Parvaz2 , William A Sarnacki1 , Rita Z Goldstein2 and Jonathan R Wolpaw1"Prediction of subjective ratings of emotional pictures by EEG features
[21] SVM and kernel machines: linear and non-linear classification
[22] A Practical Guide to Support Vector Classification
[23] Emotion recognition based on EEG features in movie clips with channel selection
指導教授 李柏磊(Po-Lei Lee) 審核日期 2019-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明