博碩士論文 104383602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:18.188.99.234
姓名 Irwansyah(Irwansyah)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 粉碎性骨折虛擬復位模擬與量測研究:利用三維定位與三維列印混合式技術
(Virtual Bone Reduction and Measurement of Comminuted Bone Fracture: Hybrid use of 3D Registration and 3D Printing Technologies)
相關論文
★ 光纖通訊主動元件之光收發模組由上而下CAD模型設計流程探討★ 汽車鈑金焊接之夾治具精度分析與改善
★ 輪胎模具反型加工路徑規劃之整合研究★ 自動化活塞扣環壓入設備之開發
★ 光學鏡片模具設計製造與射出成形最佳化研究★ CAD模型基礎擠出物之實體網格自動化建構技術發展
★ 塑膠射出薄殼件之CAD模型凸起面特徵辨識與分模應用技術發展★ 塑膠射出成型之薄殼件中肋與管設計可製造化分析與設計變更技術研究
★ 以二維影像重建三維彩色模型之色彩紋理貼圖技術與三維模型重建系統發展★ 結合田口法與反應曲面法之光學鏡片射出成型製程參數最佳化分析
★ 薄殼零件薄殼本體之結構化實體網格自動建構技術發展★ Boss特徵之結構化實體網格自動化建構技術發展
★ 應用於模流分析之薄殼元件CAD模型特徵辨識與分解技術發展★ 實體網格建構對於塑膠光學元件模流分析 之影響探討
★ 螺槳葉片逆向工程CAD模型重建與檢測★ 電腦輔助紋理影像辨識與點資料視覺化研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 藉由把傳統手繪草圖電腦化的過程中,術前規劃系統已經到達新的里程碑,3D 術
前規劃系統幫助外科醫生建立清晰的 3D 骨頭模型並且增加醫生對真實破損骨頭的認知,
為了修復破損的骨頭回復到原本的骨頭結構位置,人機介面分析工具(Computer mouse,
keyboard and haptic devices)常被用來引導破裂的骨頭碎片,此外,利用多對點約束來配
對骨頭碎片為大眾的對應方式,然而,這些研究通常是複雜且不直觀,而且常重複運
算造成時間損失,特別是配對兩個解析度不高的骨頭碎片點資料中,很難精準的回覆
骨頭碎片。
本研究基於模板化、解剖學指標與破裂線選擇上的考量,來解決配對對應點的限制,
半自動點配對方法被用來轉換骨頭碎片到相對應的目標,其演算法是根據單數值分解,
為了量化建議的配對點結果,需計算位置與旋轉的均方根誤差,目前的配對方法已經
在不同層面的錯誤中,完成骨頭復位,其結果與其他研究並沒有太大的差別,在不同
的破碎案例中,每個校正方法各有優缺點,因此,以上討論的配對物件將會幫助使用
者在辨識配對點和虛擬破碎骨頭復位的過程中減少手術時間。
組裝和驗證 3D 列印之破碎骨頭的研究為確保在電腦建模中的 3D 骨頭幾何模型與
實際上 3D 列印出來的模型一樣,網格的完整性在轉換 3D 模型至可列印之檔案是很重
要的,辨識和移除重疊網的演算法,可以用來增進 3D 骨頭模型,在每一個模型中,擁
有最大均方根誤差亦為百分誤差之面編號是需要被計算的,結果顯示 3D 列印出來之骨
頭可以簡單的組裝而且在破裂面上只有細微的裂縫,而這些裂縫是在可接受的誤差中。
除了評估 3D 列印出來之骨頭,也針對骨頭的型態做探討,目前針對正常骨頭型態
的參數已經可以被計算出來,其結果被儲存在資料庫中供後續作為虛擬骨頭復位過程
的參考資料,在未來將會針對骨頭復位方面做演算法的改進,並且持續增進辨識與移
除網格瑕疵功能,以增進骨頭型態的自動化計算,衍生之計畫為藉由通過 3D 列印與自
動骨裂復位技術,增進術前規劃系統,這項研究可避免在過程中使用錯誤嘗試法並準
確地復位骨頭,減少手術時間與減少輻射吸收。
摘要(英) Three-dimensional (3D) preoperative planning system has gained important and new milestone
by transforming the traditional manual sketching to computerization. The system assists surgeons
to generate the bone model with clear visibility and increase the understanding of actual damaged
bones. In order to recover the bone fractures back into their anatomic original pose, user interactive
approach is commonly used as a navigation tool. Multi-paired point is the popular registration
constraints to match the bone fragments. However, this method is tedious, and repetitive tasks,
specifically when it is necessary to accurately relocate bone fragments due to difficulties in
determining matching points in two unclear visibility of given fragments.
Templated based, landmark point based and fracture lines based registration are studied
and evaluated to solve the limitation of paired points based registration. A semi-automatic bone
reduction was proposed to match the fragment with it counterparts. To quantify the results of the
proposed registration, displacement errors in fragment position were calculated. The proposed
registrations have accomplished bone reduction with various level errors. The results were not
significantly different from other approaches. Each of the registration has its own strength and
weakness that might be useful for different types of fracture cases. Hence, introducing the
discussed types of registration features will assist the user in recognizing paired points and in
reducing operation time during the virtual fractured bone reduction process.
The assembly and verification of 3D-printed bone fractures were studied to ensure the
geometric result of 3D bone modelling in the computer process similar to 3D-printed physical
parts. To transform the 3D model to be a file ready for printing, mesh correction and removal
of common errors are necessary. The algorithm for detecting and removing of overlapping
meshes were performed to improve 3D bone models. Facets number, maximum and RMS errors
as well as percentage difference of the overlapping meshes on each bone model are calculated.
The results show that 3D-printed bone parts could be easily assembled and only small gap errors
were noted on the fracture surface regions within an acceptable range of deviation.
Beyond the physical geometry of 3D-printed assessment, bone morphological parameters
also evaluated. In present, the normal bone morphology parameters were computationally
measured. The results are stored in database and used as the reference to evaluate the virtual
bone reduction. In the future, we will improve our algorithm for supporting bone reduction,
detecting and removing mesh defects, and enhancing automatic bone morphology measurement.
Extending study was also considered by elaborating virtual bone reduction with 3D-printing
and robotic technology to encourage the preoperative planning system. It may be beneficial to
avoid the trial-and-error process and accurate bone reduction.
關鍵字(中) ★ 虛擬骨骼復位
★ 3D 配對
★ 組裝 3D 列印物件
★ 骨骼形態學
關鍵字(英) ★ Virtual bone reduction
★ 3D registration
★ Assembly 3D-printed parts
★ Bone morphology
論文目次 ABSTRACT .............................................................................................................. i
ACKNOWLEDGEMENTS ....................................................................................... iii
CONTENTS ................................................................................................................ v
LIST OF FIGURES .................................................................................................. viii
LIST OF TABLES .................................................................................................... xiv
CHAPTER I INTRODUCTION............................................................................... 1
1.1 Introduction .......................................................................................................... 1
1.2 Computer assisted preoperative planning surgery.................................................. 2
1.3 Bone fracture and current treatments...................................................................... 7
1.4 Motivation and goals.............................................................................................. 7
1.5 Structure of the dissertation and terminology......................................................... 13
CHAPTER II LITERATURE REVIEW ................................................................ 18
2.1 Computer-assisted bone fractures reduction ......................................................... 18
2.1.1 Reconstruction of 3D model......................................................................... 18
2.1.2 Segmentation and optimization bone fragment .......................................... 19
2.1.3 Registration and transformation of bone fragment ..................................... 21
2.2 Assembly and verification of 3D-printed bone fragments .................................... 24
2.2.1 Manipulation of anatomical mesh model ................................................... 25
2.2.2 3D printing techniques and material selection ........................................... 27
2.3 Measurements of morphological bone anatomy ................................................... 28
2.3.1 2D and 3D measurement of bone morphology ........................................... 28
2.3.2 Manual and computer-assisted measurement ............................................. 31
CHAPTER III REPOSITIONING BONE FRAGMENTS IN VIRTUAL SURGERY 35
3.1 Introduction .......................................................................................................... 35
3.2 Generation 3D bone model ................................................................................... 35
3.3 Aligning bone fragments ...................................................................................... 37
3.3.1 Paired-points based registration ................................................................. 37
3.3.2 Templated based registration ...................................................................... 40
3.3.3 Landmark point based registration ............................................................... 44
3.3.4 Fractured line based registration ................................................................ 44
3.4 Registration bone fragment based on SVD algorithm .......................................... 47
3.5 Comparative evaluation and analysis ................................................................... 59
3.6 Results and discussion .......................................................................................... 61
3.6.1 Results ........................................................................................................ 61
3.6.2 Discussion ................................................................................................... 62
3.7 Summary ............................................................................................................... 73
CHAPTER IV ASSEMBLY AND VERIFICATION 3D PRINTED BONE FRACTURES 74
4.1 Introduction .......................................................................................................... 74
4.2 Repairing triangulated mesh model ...................................................................... 74
4.2.1 Detecting noise and mesh error .................................................................. 75
4.2.2 Removal of overlapping meshes ................................................................ 86
4.3 Assembling 3D-printed bone parts ....................................................................... 86
4.3.1 3D-printing of bone fragments ................................................................. 89
4.3.2 Evaluation of assembled bone fragments ................................................... 89
4.4 Results and discussion .......................................................................................... 90
4.4.1 Results ........................................................................................................ 90
4.4.2 Discussion ................................................................................................... 98
4.5 Summary ............................................................................................................... 107
CHAPTER V THREE-DIMENSIONAL MORPHOLOGY MEASUREMENTS 111
5.1 Introduction .......................................................................................................... 111
5.2 Defining the anatomical landmark on the bone surface mesh .............................. 111
5.2.1 Identifying anatomical landmark ................................................................ 114
5.2.2 Localizing the landmark on surface mesh .................................................. 115
5.3 Assessment morphological parameters ................................................................. 118
5.3.1 3D Calcaneal morphology measurement .................................................... 118
5.3.2 Verification of measurement method .......................................................... 122
5.4 Results and discussion .......................................................................................... 124
5.4.1 Results ........................................................................................................ 124
5.4.2 Discussion ................................................................................................... 129
5.5 Summary ............................................................................................................... 135
CHAPTER VI CONCLUSION AND FUTURE STUDY ...................................... 136
6.1 Conclusion ............................................................................................................ 136
6.1.1 Repositioning bone fragments in virtual reduction surgery ....................... 136
6.1.2 Assembly and verification 3D-printed bone fractures ................................ 137
6.1.3 Three-dimensional morphology measurements ......................................... 137
6.2 Future works ......................................................................................................... 138
NOMENCLATURES ............................................................................................... 139
REFERENCES ......................................................................................................... 142
參考文獻 REFERENCES


Albrecht, T., Vetter, T. “Automatic fracture reduction.” In: Levine, J.A.Paulsen, R.R., Zhang, Y. (Eds.), “Mesh Processing in Medical Image Analysis”, 2012, In: Vol. 7599 of Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, pp. 22-29. DOI: 10.1007/978-3-642-33463-4_3.
Alliez, P., Colin de Verdière, É., Devillers, O., Isenburg, M. “Isotropic surface remeshing”, In Proc. of the Shape Modeling International 2003 (SMI ′03), IEEE Computer Society Washington, DC, USA, May 12 – 15, 2003, pp. 49. https://hal.inria.fr/inria-00071991.
Arun, K.S., Huang, T.S., Blostein, S.D. “Least-squares fitting of two 3-D point sets”, IEEE Trans. on Pattern Analysis and Machine Intelligence, PAMI-9, No. 5, 1987, pp. 698-700.
Atesok, K., Galos, D., Jazrawi, L.M., Egol, K.A. “Preoperative planning in orthopaedic surgery current practice and evolving applications”, Bulletin of the Hospital for Joint Diseases, 2015, Vol. 73, Issue 4, pp. 257-68. PMID: 26630469.
Attene, M. “A lightweight approach to repair polygon meshes”, The Visual Computer, Vol. 26, No. 11, 2010, pp. 1393-1406. https://doi.org/10.1007/s00371-010-0416-3.
Avşar, E. and Ün, K. “Automatic 3D modeling and simulation of bone-fixator system in a novel graphical user interface”, Informatics in Medicine, 2016, pp. 78-91. https://doi.org/10.1016/j.imu.2016.04.002.
Bagaria, V., Rasalkar, D., Bagaria, S. J. and Ilyas, J. “Medical applications of rapid prototyping-A new horizon”, Advanced Applications of Rapid Prototyping Technology in Modern Engineering, In: Hoque, M. E. (Ed.), Intech, 2011, pp.1-20.
Baumann, F.W., and Roller, D. “Overview of German additive manufacturing companies”, Data descriptor. Vol. 2, No. 23, 2017, pp. 1-17. https://doi.org/10.3390/data2030023.
Besl, P.J. and McKay, N.D. “Method for registration of 3-D shapes”, In Proc. of the Sensor Fusion IV: Control Paradigms and Data Structures, Vol. 1611, 1992, pp. 586-606. https://doi.org/10.1117/12.57955.
Bharati, A., Garekar, A., Agarwal, V., Merchant, S.A., Solanki, N. “MRA-based 3D-printed heart model an effective tool in the pre-surgical planning of DORV”. https://doi.org/10.1259/bjrcr.20150436.
Bidmos, M., and Asala, S. “Calcaneal measurement in estimation of stature of South African blacks”, J. Phys. Anthropol., Vol. 126, No. 3, 2004, pp. 335-342. https://doi.org/10.1002/ajpa.20063.
Bintara, R.D. 2018. “Development of overlapping removal algorithm on 3D fractured bone model for the assembly application in 3D printing”, Master thesis report, Dept. of Mechanical Engineering, National Central University, Taiwan.
Bizzotto, N., Tami, I., Santucci, A., Adani, R., Poggi, P., Romani, D., Carpeggiani, G., Ferraro, P., Festa, S., and Magnan, B. “3D Printed replica of articular fractures for surgical planning and patient consent: a two years multi-centric experience”, 3D Printing in Medicine, Vol. 2, No. 2, 2016. https://doi.org/10.1186/s41205-016-0006-8.
Bizzotto, N., Sandri, A., Regis, D., Romani, D., Tami, I., and Magnan, B. “Three-dimensional printing of bone fractures: A new tangible realistic way for preoperative planning and education”, Surgical Innovation, Vol. 22, No. 5, 2015, pp. 548-551. https://doi.org/10.1177/1553350614547773.
Böhler L. “Diagnosis, pathology, and treatment of fractures of the os calcis”, Journal of Bone Joint Surgery Am., Vol. 13, 1931, pp. 75-89.
Bonnel, F., Teissier, P., Maestro, M., Ferré, B., and Toullecc, E. “Biometry of bone components in the talonavicular joint: A cadaver study. Orthopaedics and Traumatology: Surgery and Research”, Vol. 97, No. 6, 2011, pp. S66-S73. https://doi.org/10.1016/j.otsr.2011.06.005.
Boudissa, M., Oliveri, H., Chabanas, M., Tonetti, J. “Computer-assisted surgery in acetabular fractures: virtual reduction of acetabular fracture using the first patient-specific biomechanical model simulator”, Orthop Trauma. Surg Res., Vol. 104, No. 3, 2018, pp. 359-362. https://doi.org/10.1016/j.otsr.2018.01.007.
Brown, G.A., Firoozbakhsh, K., Gehlert, R.J. “Three-dimensional CT modeling versus traditional radiology techniques in treatment of acetabular fractures”, The Iowa orthopaedic journal, Vol. 21, 2001, pp. 20-24.
Buschbaum, J., Fremd, R., Pohlemann, T. “Computer-assisted fracture reduction: a new approach for repositioning femoral fractures and planning reduction paths”, Int. Journal CARS, Vol. 10, 2015, pp. 149-159. https://doi.org/10.1007/s11548-014-1011-2.
Callieri, M., Dellepiane, M., Cignoni, P., Scopigno, R. “Processing sampled 3D data: reconstruction and visualization technologies”, Digital Imaging for Cultural Heritage Preservation: Analysis, Restoration, and Reconstruction of Ancient Artworks. 2011.
Capponetti, L and Fanelli, A.M. “3D bone reconstruction from two x-ray view”, In Proc. of the twelfth annual international conference IEEE. Engineering in Medicine and Biology Society, Vol. 12, No.1, 1990. pp. 0208-0210. https://doi.org/10.1109/IEMBS.1990.691042.
Carew, R.M., Morgan, R.M., and Rando, C. A. “Preliminary investigation into the accuracy of 3D modeling and 3D printing in forensic anthropology evidence reconstruction”, Journal of Forensic Sciences, 2018, pp.1-11. https://doi.org/10.1111/1556-4029.13917.
Carrillo, F., Vlachopoulos, L., Schweizer, A., Nagy, L., Snedeker, J., and Fürnstahl, P. “A time saver: Optimization approach for the fully automatic 3D planning of forearm osteotomies”, M. Descoteaux et al. (Eds.): MICCAI 2017, Part II, LNCS 10434, 2017, pp. 488-496.
https://doi.org/10.1007/978-3-319-66185-8-55.
Cerveri, P., Marchente, M., Bartels, W., Corten, K., Simon, J.P. and Manzotti, A. “Automated method for computing the morphological and clinical parameters of the proximal femur using heuristic modeling techniques”, Annals of Biomedical Engineering, Vol. 38, No. 5, 2010, pp. 1752-1766. https://doi.org/10.1007/s10439-010-9965-x.
Chae, M.P., Rozen, W.M., McMenamin, P.G., Findlay, M.W., Spychal, R.T., and Hunter-Smith, D.J. “Emerging applications of bedside 3D printing in plastic surgery”, Frontier Surgery, Vol. 2, No. 25, 2015, pp.1-14. https://doi.org/10.3389/fsurg.2015.00025.
Chan, H.H., Siewerdsen, J.H., Vescan, A., Daly, M.J., Prisman, E., Irish, J.C. “3D rapid prototyping for otolaryngology-head and neck surgery: Applications in image-guidance, surgical simulation and patient-specific modeling”, PLoS ONE, Vol. 10, No. 9, 2015. https://doi.org/ 10.1371/ journal.pone.0136370.
Chen, Y., Qiang, M., Zhang, K., Li, H. and Dai, H. “A reliable radiographic measurement for evaluation of normal distal tibiofibular syndesmosis: a multi-detector computed tomography study in adults”, Journal of Foot Ankle Res., Vol. 8, No. 32, 2015, pp. 1-10. https://doi.org/10.1186/s13047-015-0093-6.
Chen, Y.X., Lu, X.L., Bi, G., Yu, X., Hao, Y.L., Zhang, K., Zhou, L.L., Mei, J., and Yu, G.R. “Three-dimensional morphological characteristics measurement of ankle joint based on computed tomography image post-processing”, Chinese Medical Journal, Vol. 124, 2011, pp. 3912-3918. https://doi.org/ 10.3760/ cma.j.issn.0366-6999.2011.23.015.
Chou Y.J., Sun S.P., Liu H.H. “Calcaneal osteotomy preoperative planning system with 3D full-sized computer assisted technology”, Journal of Medical Systems. Vol. 35. No. 5. 2011. pp. 755-63. https://doi.org/ 10.1007/ s10916-010-9465-4.
Chowdhury, A., Bhandarkar, S., Robinson, R., Yu, J.C. “Virtual craniofacial reconstruction from computed tomography image sequences exhibiting multiple fractures”, In Proc. of the Int. Conference on Image Processing, IEEE, 2006, pp. 1173-1176. https://doi.org/10.1109/ICIP.2006.312766.
Chowdhury, A.S., Bhandarkar, S.M., Robinson, R.W., Yu, J.C. “Virtual craniofacial reconstruction using computer vision, graph theory and geometric constraints”, Pattern Recognition Letters, Vol. 30, Issues 10, 2009 (a). pp. 931-938. https://doi.org/10.1016/j.patrec.2009.03.010.
Chowdhury, A.S., Bhandarkar, S.M., Robinson, R.W., Yu, J.C. “Virtual multifracture craniofacial reconstruction using computer vision and graph matching”, Computerized Medical Imaging Graphics, Vol. 33, Issues 5, 2009 (b), pp. 333-342. https://doi.org/10.1016/j.compmedimag.2009.01.006.
Chua, C.K., Chou, S.M., Lin, S.C., Hoe, E.K., and Lew, K.F. “Erratum to: Rapid prototyping assisted surgery planning”, Int. Journal of Advanced Manufacturing Technology, Vol. 86, 2016, pp. 1137. https://doi.org/10.1007/s00170-016-9122-2.
Cignoni, P., Rocchini, C., and Scopigno, R. “Metro: measuring error on simplied surfaces”, Computer Graphics Forum, Vol. 17, Issue 2, 1998, pp.197-174. https://doi.org/10.1111/1467-8659.00236.
Cimerman, M., Kristan, A. “Preoperative planning in pelvic and acetabular surgery: the value of advanced computerised planning modules”’ Injury, Vol. 38, No. 4, 2007, pp. 442-449. https://doi.org/ 10.1016/j.injury.2007.01.033.
Cohen, Y.B. “Advances in manufacturing and processing of materials and structures”, CRC Press, 2018.
Deferm, S., Meyns, B., Vlasselaers, D., Budts, W. “3D Printing in congenital cardiology: from flatland to spaceland”, Journal of Clinical Imaging Science, Vol. 6, No. 8, 2016. https://doi.org/ 10.4103/2156-7514.179408.
Dhakshyani, R., Nukman, Y., Abu Osman, A.N. and Vijay, C. “Preliminary report: rapid prototyping models for dysplastic hip surgery”, Central European Journal of Medicine, Vol. 6, No. 3, 2011, pp. 266-270. https://doi.org/10.2478/s11536-011-00.
DiGioia, A.M., Jaramaz, B., and O’Toole III, R.V. “Medical robotics and computer assisted surgery in orthopaedics an integrated approach”, Studies in health Technology and Informatics, Vol. 18, Interactive Technology and the New Paradigm for Healthcare. pp. 88-90. https://doi.org/
10.3233/ 978-1-60750-862-5-88.
Domokos, C., and Kato, Z. “Realigning 2D and 3D object fragments without correspondences”, In Proc. of the 11th European Conf. on Computer Vision, Vol. 6312 of lecture notes in Computer Science, Crete, Greece, Springers-Verlag, Berlin, 2016, pp. 777-790. https://doi.org/10.1109/ TPAMI. 2015. 2450726.
Du, Z., Wang, W., Wang, W. and Dong, W. “Preoperative planning for a multi-arm robot-assisted minimally invasive surgery system.” Simulation: Transactions of the Society for Modeling and Simulation Int., Vol. 93, Issue 10, 2017, pp. 853-867. https://doi.org/10.1177/0037549717719336.
Dubrovin, V.N., Egoshin, A.V., Batukhtin, D.M., Eruslanov, R.V., Chernyshov, D.S., Rozhentsov, A.A., Furman, Y.A. “Application of 3D modeling for preoperative planning and intra operative navigation during procedures on the organs of retroperitoneal space”, Experimental Techniques in Urology and Nephrology, Vol. 1, No. 2, 2018, pp. 1-5. https://doi.org/10.31031/ETUN.2018.01.000510.
Duncan, J.M., Nahas, S., Akhtar, K., Daurka. J. “The use of a 3D printer in pre-operative planning for a patient requiring acetabular reconstructive surgery”, Journal of Orthopaedic Case Reports, Vol. 5, No. 1, 2015, pp. 23-25. https://doi.org/10.13107/jocr.2250-0685.247.
Egol KA, Koval KJ, and Zuckerman JD (Eds.). “Lower extremity fractures and dislocations. In: Handbook of fractures”, (4th edn), Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins Health 2010, pp. 420-428.
Ehrhardt J, Handels H, Strathmann B, Malina T, Plötz W, and Pöppl SJ. “Atlas-based recognition of anatomical structures and landmarks to support the virtual three-dimensional planning of hip operations”, R.E. Ellis and T.M. Peters (Eds.): MICCAI 2003, LNCS 2878, Springer-Verlag Berlin Heidelberg, 2003, pp. 17-24.
Engel, K., Hadwiger, M., Kniss, J.M., Rezk-Salama, C., Weiskopf, D. “Real-time volume graphics”, Taylor & Francis Group, LLC, 2006, pp. 17-25.
Estomba, C.M.C, González-Fernández, I., Iglesias-Otero, M.A. “3D printing for biomedical applications: Where are we now?”, EMJ European Medical Journal, Vol. 2, No. 1, 2017, pp. 16-22.
Farooqi, K.M. “Rapid prototyping in cardiac disease: 3D Printing the Heart”, Springer Int. Publishing, 2017. https://doi.org/10.1007/978-3-319-53523-4.
Favier, V., Zemiti, N., Caravaca Mora, O., Subsol, G., Captier, G., Lebrun, R., et al. “Geometric and mechanical evaluation of 3D-printing materials for skull base anatomical education and endoscopic surgery simulation-A first step to create reliable customized simulators”, PLoS ONE, Vol. 12, No. 12, 2017, pp. 1-16. https://doi.org/ 10.1371/journal.pone.0189486.
Feng, J.L. 2014. “Preoperative planning system for bone trauma surgery clinical simulation and applications”, Master thesis report. Dept. of Mechanical Engineering, National Central University, Taiwan.
Fornaro, J., Harders, M., Keel, M., Marincek, B., Trentz, O., Székely, G., and Frauenfelder, T. “Interactive visuo-haptic surgical planning tool for pelvic and acetabular fractures”, Studies in Health Technology and Informatics, 2008, Vol. 132, pp. 123-125. http://europepmc.org/abstract/med/18391271.
Fornaro, J., Keel, M., Harders, M., Marincek, B., Székely, G., Frauenfelder, T. “An interactive surgical planning tool for acetabular fractures: initial results”, Journal Orthopaedic Surgery and Research. Vol. 5, 50, 2010 (a), pp. 1-8. https://doi.org/10.1186/1749-799X-5-50.
Fornaro, J., Székely, G., Harders, M. “Semi-automatic segmentation of fractured pelvic bones for surgical planning”, Biomedical Simulation, 5958, 2010 (b), pp. 82-89. https://doi.org/10.1007/ 978-3-642-11615-5-9.
Friedman, T., Michalski, M., Rob Goodman, T., and Elliott Brown, J. “3D printing from diagnostic images: a radiologist’s primer with an emphasis on musculoskeletal imaging-putting the 3D printing of pathology into the hands of every physician”, Skeletal Radiology, Vol. 45, No. 3, 2015, pp. 307-321. https://doi.org/10.1007/ s00256-015-2282-6.
Funkhouser, T., Shin, H., and Toler-Franklin, C. “Learning how to match Fresco fragments. Journal on computing and cultural heritage”, Vol. 4, No. 2, article 7, 2011, pp. 7:1-7:13. https://doi.org/ 10.1145/2037820.2037824.
Fürnstahl, P., Székely, G., Gerber, C., Hodler, J., Snedeker, J.G., Harders, M. “Computer assisted reconstruction of complex proximal humerus fractures for preoperative planning”, Medical Image Analysis, Vol. 16, No. 3, 2012, pp.704-720. https://doi.org/10.1016/j.media.2010.07.012.
Garcia, J., Yang, Z., Mongrain, R., Leask, R.L., and Lachapelle, K. “3D printing materials and their use in medical education: a review of current technology and trends for the future”, BMJ Simulation and Tech. Enhanced Learning, Vol. 4, No. 1, 2017, pp. 27-40. http://dx.doi.org/10.1136/bmjstel-2017-000234.
George, E., Liacouras, P., Rybicki, F.J., Mitsouras, D. “Measuring and establishing the accuracy and reproducibility of 3D printed medical models“, Radiographics, Vol. 37, No. 5, 2017. pp.1424-1450. https://doi.org/10.1148/rg.2017160165.
Gibson, I., Rosen, D., Stucker, B. “Additive manufacturing technologies 3D printing, rapid prototyping, and direct digital manufacturing”, 2015.
Gissane W. “News notes: proceedings of the British Orthopedic Association”, Journal of Bone and Joint Surgery, Vol. 29, 1947, pp. 254-255.
Graham, A.E., Xie, S.Q., Aw, K.C., Xu, W.L., and Mukherjee, S. “Robotic long bone fracture reduction”, Medical Robotics Book edited by Vanja Bozovic, I-Tech Education and Publishing Vienna, Austria, 2008, pp. 526. https://doi.org/10.5772/5242.
Gutekunst, D.J., Liu, L., Ju, T., Prio,r F.W., and Sinacore, D.R. “Reliability of clinically relevant 3D foot bone angles from quantitative computed tomography”, Journal of Foot and Ankle Research, Vol. 6, No. 38, 2013, pp.1-8. https://doi.org/10.1186/1757-1146-6-38.
Harness, N.G., Ring, D., Zurakowski, D., Harris, G.J., and Jupiter, J.B. “The influence of three-dimensional computed tomography reconstructions on the characterization and treatment of distal radial fractures”, Journal of bone and joint surgery.” Vol. 88-a, No. 6, 2006. https://doi.org/ 10.2106/JBJS.E.00686.
Hayashibe, M., Suzuki, N., Hashizume, M., Kakeji, Y., Konishi, K., Suzuki, S., Hattor, A. “Preoperative planning system for surgical robotics setup with kinematics and haptics”, Int. Journal of Medical Robotics and Computer Assisted Surgery, Vol. 1, Issues 2, 2005, pp. 76-78. https://doi.org/10.1002/rcs.18.
Hoang, D., Perrault, D., Stevanovic, M., Ghiassi, A. “Surgical applications of three-dimensional printing: a review of the current literature & how to get started”, Annals of Translational Medicine, Vol. 4, No. 23, 2016, pp. 1-19. https://doi.org/10.21037/atm.2016.12.18.
Howard, A., and Giannoudis, P.V. “Proximal femoral fractures: issues and challenges”, Injury, Vol. 43, No. 12, 2012, 1975- 977. https://doi.org/10.1016/j.injury.2012.09.013.
Hsu, S.H., and Lai, J.Y. “Extraction of geodesic and feature lines on triangular meshes”, Int. Journal of Adv. Manufacturing Tech., Vol. 42, 2009, pp. 940-954. https://doi.org/10.1007/s00170-008-1651-x.
Hu, Y., Li, H., Qiao, G., Liu, H., Ji, A., Ye, F. “Computer-assisted virtual surgical procedure for acetabular fractures based on real CT data”, Injury, Vol. 42, No. 10, 2011, pp. 1121-1124. https://doi.org/ 10.1016/j.injury.2011.01.014.
Huang, C.Y., Lee, P.Y., Lai, J.Y., Luo, P.J., Tsai, Y.C., Lin, S.C. “Simultaneous segmentation of bone regions using multiple-level threshold”, Computer-Aided Design & Applications, Vol. 8, No. 2, 2011, pp. 269-288. http://dx.doi.org/10.3722/cadaps.2011.269-288.
Huang, C.Y., Luo, P.J., Lee, P.Y., Lai, J.Y., Wang, W.T., Lin, S.C. “Efficient segmentation algorithm for 3D bone models construction on medical images”, Journal of Medical and Biological Engineering, Vol. 31, No. 6, 2010, pp. 375-386. https://doi.org/10.5405/jmbe.734.
Hüfner, T., Pohlemann, T., Tarte, S., Gänsslen, A., Citak, M., Bazak, N., Culemann, U., Nolte, L.P., Krettek, C. “Computer‐assisted fracture reduction: Novel method for analysis of accuracy”, Computer Aided Surgery, Vol. 6, Issue 3, 2001, pp. 153-159. https://doi.org/10.1002/igs.1018.
Hughes, A.J., DeBuitleir, C., O’Donnchadha, B., Tansey, A., Abdulkarim, A., McMahon, C., Hurson, C.J. “3D printing aids acetabular reconstruction in complex revision hip arthroplasty”, Advances in Orthopedics, Vol. 2017, Article ID 8925050. pp. 1-7. https://doi.org/10.1155/2017/8925050.
Idram, I., Lai, J.Y., Essomba, T., Lee, P.Y. “Study on repositioning of comminuted fractured bones for computer aided preoperative planning”, In Proc. of the 4th Int. Conf. Biomedical and Bio-Informatics Engineering., Seoul, South Korea, November 12-14, 2017, pp. 30–34.
Irwansyah, Lai, J.Y., Lee, P.Y. “Algorithm for segmentation and reduction of fractured bones in computer-aided preoperative surgery”, In Proc. of tthe 3rd Int. Conf. on Biomedical and Bio-Informatics Engineering, Taipei, Taiwan, November 12-14, 2016, pp. 12-18.
Irwansyah, Lai, J.Y., Lee, P.Y., Chung, C.Y. “Development and clinic study of an integrated preoperative planning system for orthopaedic surgery”, In Proc. of the XIV Int. Symposium on 3D Analysis of Human Movement. Taipei, Taiwan, July 18-21, 2016, pp. 141-144, O35.
Irwansyah, Redyarsa, D.B., Lai, J.Y., Essomba, T., and Lee, P.Y. “Integration of computer-aided pre-operative planning and 3D printing technology for comminuted fracture bone surgery”, In Proc. of the 3rd IEEE-Int. Conf. on Applied System Innovation (ICASI), Sapporo, Japan, 2017, pp. 1235-1238. https://doi.org/10.1109/ICASI.2017.7988116.
Irwansyah, Redyarsa, D.B., Lai, J.Y., Essomba, T., and Lee, P.Y. “Detecting and removing overlap meshes for the assembly of 3D-printed fractured bones”, In Proc. of the 4th IEEE-Int. Conf. on Applied System Innovation (ICASI), Chiba, Japan, 2018, pp. 362-365. https://doi.org/10.1109/ICASI.
Jacinto, H., Valette, S., and Prost, R. “Multi-atlas automatic positioning of anatomical landmarks”, J Vis Commun Image R., Vol. 50, 2018, pp. 167-177. https://doi.org/10.1016/j.jvcir.2017.11.015.
Jackson, A., Ray, L.A., Dangi, S., Ben-Zikri, Y.K., and Linte, C.A. “3D printing for orthopedic applications: from high resolution cone beam CT images to life size physical models”, In Proc. of the SPIE, Medical Imaging, Imaging Informatics for Healthcare, Research, and Application, Vol. 10138, 2017, pp. 1-9. https://doi.org/10.1117/12.2256181.
Jamali A.A., Deuel C., Perreira A., Salgado C.J., Hunter J.C.,and Strong E.B. “Linear and angular measurements of computer-generated models: Are they accurate, valid, and reliable?”, Computer Aided Surgery, Vol. 12, No. 5, 2007, pp. 278-285. https://doi.org/10.3109/10929080701680265.
Jia, X., Chen, Y., Qiang, M., Zhang, K., Li, H., Jiang, Y. and Zhang, Y. “Compared to X-ray, three-dimensional computed tomography measurement is a reproducible radiographic method for normal proximal humerus”, Journal of Orthopaedics Surgery and Research, Vol. 11, No. 82, 2016, pp. 11: 1-7. https://doi.org/10.1186/ s13018-016-0417-7.
Jiménez-Delgado, J.J., Paulano-Godino, F., Ram-Ramírez, R.P., Jiménez-Pérez, J.R. “Computer assisted preoperative planning of bone fracture reduction: Simulation techniques and new trends”, Medical Image Analysis, Vol. 30, 2016, pp. 30-45. https://doi.org/10.1016/j.media.2015.12.005
Joskowicz, L., Milgrom, C., Simkin, A., Tockus, L., Yaniv, Z. “FRACAS: a system for computer-aided image-guided long bonefracture surgery”, Computer Aided Surgery, Vol. 3, No. 6, 1998, pp. 271-288. https://doi.org/10.1002/(SICI)1097-0150 (1998) 3: 6<271::AID-IGS1>3.0.CO;2-Y.
Kai, C.C., Meng, C.S., Ching, L.S., Hoe, E.K. and Fah, L.K. “Rapid prototyping assisted surgery planning”, Int. Journal of Advanced Manufacturing Technology, Vol. 14, No. 9, 1998, pp. 624-630. https://doi.org/10.1007/s00170-016-9122-2.
Kamio, T., Hayashi, K., Onda, T., Takaki, T., Shibahara, T., Yakushiji, T., Shibui, T., and Kato, H. “Utilizing a low-cost desktop 3D printer to develop a one-stop 3D printing lab for oral and maxillofacial surgery and dentistry fields”, 3D Printing in Medicine, Vol. 4, No. 6, 2018, pp. 1-7. https://doi.org/10.1186/s41205-018-0028-5.
Kato, Z. “A unifying framework for correspondence-less shape alignment and its medical applications”, In: Agrawal A., Tripathi R.C., Do E.YL., Tiwari M.D. (eds) Intelligent Interactive Technologies and Multimedia. IITM 2013. Communications in Computer and Information Science, Vol. 276, Springer, Berlin, Heidelberg, 2013, pp. 40-52. https://doi.org/10.1007/978-3-642-37463-0_4.
Kellam, J.F., Meinberg, E.G., Agel, J., Karam, M.D., Roberts, C.S. “Introduction: fracture and dislocation classification compendium-2018”, Int. Comprehensive Classification of Fractures and Dislocations Committee. J. Orthop. Trauma, Vol. 32, Suppl. 1, 2018, pp. S1-S10. https://doi.org/ 10.1097/BOT.0000000000001063.
Kim, D.I., Kim, Y.S., Lee, U.Y., and Han, S.H. “Sex determination from calcaneus in Korean using discriminant analysis”, Forensic Science Int., Vol. 228, 2013, pp. 1-3. https://doi.org/ 10.1016/j.forsciint.2013.03.012.
Kim, D.I., Lee, S.S., Kim, Y.S. “Statistical analysis of bone elements excavated from the forensic context”, Korean Journal of Physical Anthropology. Vol. 23. No. 1. 2010. pp. 1-8. https://doi.org/10. 11637/ kjpa.2010.23.1.1.
Kim, H.N., Liu, X.N., Noh, K.C. “Use of a real-size 3D-printed model as a preoperative and intra operative tool for minimally invasive plating of comminuted mid-shaft clavicle fractures”, J. of Ortho-paedic Surgery and Research, Vol. 10, No. 91, 2015, pp. 1-6. https://doi.org/10.1186/s13018-015-0233-5.
Kondo, K., Harada, N., Masuda, H., Sugo, N., Terazono, S., Okonogi, S., Sakaeyama, Y., Fuchinoue, Y., Ando, S., Fukushima, D., Nomoto, J., Nemoto, M. “Neurosurgical simulation of skull base tumors using a 3D printed rapid prototyping model containing mesh structures”, Acta Neurochir., Vol. 158, No. 6, 2016, pp. 1213-1219. https://doi.org/10.1007/s00701-016-2781-9.
Kronman, A., and Joskowic, L. “Automatic bone fracture reduction by fracture contact surface identification and registration”, In Proc. of the IEEE Int. Symp. on Biomedical Imaging: from nano to macro, April 7-11, 2013, pp.246-249. https://doi.org/10.1109/ISBI.2013.6556458.
Kuo, C.C., Lu, H.L. Lu, T.W. Leardini, A. Kuo, M.Y., and Hsu, H.C. “Validity and reliability of ankle morphological measurements on computerized tomography-synthesized planar radiographs”, Biomed Eng Online, Vol.15, No. 92, 2016. https://doi.org/10.1186/s12938-016-0215-9.
Kuo, C.C., Lu, H.L. Lu, T.W., Hsu, H.C. “Effects of positioning on radiographic measurements of ankle morphology: A computerized tomography-based simulation study”, BioMedical Eng. OnLine, Vol. 12, No. 1, 131. 2013. https://doi.org/10.1186/1475-925X-12-131.
Kurazume, R., Nakamura, K., Okada, T., Sato, Y., Sugano, N., Koyama, T., Iwashita, Y. and Hasegawa, T. “3D reconstruction of a femoral shape using a parametric model and two 2D fluoroscopic images”, In Proc. of the IEEE International Conference on Robotics and Automation, Roma, Italy, 10-14 April 2007, pp. 3002-3008. https://doi.org/10.1109/ROBOT.2007.363928.
Lachmayer, R., Gembarski, P.C., Gottwald, P., Lippert, R.B. “The potential of product customization using technologies of additive manufacturing”, In: Bellemare J., Carrier S., Nielsen K., Piller F. (eds) Managing Complexity. Springer Proceedings in Business and Economics. Springer 2015, pp.71-81. https://doi.org/10.1007/978-3-319-29058-4_6.
Lai, J.Y., and Chen, K.J.” Localization of parts with irregular shape for CMM inspection”, The Int. Journal of Advanced Manufacturing Tech., Vol. 32. No.11-12, 2006, pp. 1188-1200. https://doi.org/ 10.1007/ s00170-006-0430-9.
Lai, J.Y., Doong, J.L., Yao, C.Y. “Three-dimensional CAD model reconstruction from image data of computer tomography”, Int. Journal of Imaging Systems and Tech., Vol. 10, Issue 4, 1999, pp. 328-338. https://doi.org/10.1002/(SICI)1098-1098(1999)10:4. 328: AID-IMA4.3.0.CO;2-A
Lee, P.Y., Lai, J.Y., Hu, Y.S., Huang, C.Y., Tsai, Y.C., and Ueng, W.D. “Virtual 3D planning of pelvic fracture reduction and implant placement”, Biomedical Engineering: Applications, Basis and Comm. Vol. 24, No. 03, 2012. pp. 1250007-1 - 1250007-17. https://doi.org/ 10.1142/S101623721250007X.
Lee, P.Y., Lai, J.Y., Yu, S.A., Huang, C.Y., Hu, Y.S., and Feng, C.L. “Computer-assisted fracture reduction and fixation simulation for pelvic fractures”, Journal of Medical and Biological Engineering, Vol. 34, No. 4, 2014, pp. 368-376. https://doi.org/10.5405/jmbe.1605.
Li, K.H.C., Kui, C., Lee, E.K.M., Ho, C.S., Wong, S.H., Wu, W., et al. “The role of 3D printing in anatomy education and surgical training. A narrative review”, Amee, medEdPublish, Vol. 6, No. 11-19, 2017, pp. 10-123. https://doi.org/10.15694/mep.2017.000092.
Li, W., Kezele, I., Collins, D.L., Zijdenbos, A., Keyak, J., Kornak, J., Koyama, A., Saeed, I., LeBlanc, A., Harris, T., Lu, Y., Lang, T. “Voxel-based modelling and quantification of the proximal femur using inter-subject registration of quantitative CT images”, Bone, Vol. 41, No. 5, 2007, pp. 888–895.
Liu X, Kim W, and Drerup B. “Foot 3D characterization and localization of anatomical landmarks of the foot by FASTscan”, Real-Time Imaging, Vol. 10, No. 10, 2004, pp. 217-28. https://doi.org/ 10.1016/j.rti.2004.05.009.
Livesu, M., Ellero, S., Martínez, J., Lefebvre, S., and Attene, M. “From 3D models to 3D prints: an overview of the processing pipeline”, Computer Graphics Forum, Euro graphics, Vol. 36, No. 2, 2017, pp. 537-64. https://doi.org/10.1111/cgf.13147.
Lorensen, W.E. and Cline, H.E. “Marching cubes: A high resolution 3D surface construction algorithm”, In Proc. of the 14th Annual Conf. on Computer graphics and interactive techniques, (SIGGRAPH ′87), Vol. 21, Issue 4, July 1987, pp. 163-169. https://doi.org/10.1145/37402.37422.
Lv, L., Meng, G., Gong, H., Zhu, D., and Zhu, W. “A new method for the measurement and analysis of three-dimensional morphological parameters of proximal male femur”, Biomedical Research, Vol. 23, No. 2, 2012, pp. 219-226.
Mehra, P., Miner, J., D’Innocenzo, R. and Nadershah, M. “Use of 3-D stereolithographic models in oral and maxillofacial surgery”, Journal of Oral and Maxillofacial Surgery. Vol. 10, No. 1. 2011, pp. 6-13. https://doi. org/doi: 10.1007/s12663-011-0183-3.
Melinska, A.U., Romaszkiewicz, P., Wagel, J., Sasiadek, M., and Iskander, D.R. “Statistical, morphometric, anatomical shape model (atlas) of calcaneus”, PLOS ONE. Vol. 10, No. 8, 2015. https://doi.org/10.1371/ journal.pone.0134603.
Messmer, P., Long, G., Suhm, N., Hehli, M., Wirth, J., Regazzoni, P., Jacob, A.L. “Three-dimensional fracture simulation for preoperative planning and education“, European Journal of Trauma. Vol. 27, No. 4, 2001, pp. 171-177. https://doi.org/10.1007/s00068-001-1065-z. pp. 171-177.
Mocanu, B.C., and Zaharia, T. “A complete framework for 3D mesh morphing”, In Proc. of the 11th Virtual-Reality Continuum and its Applications in Industry (ACM SIGGRAPH), Singapore, Dec. 2-4, 2012, pp. 161-170. https://doi.org/10.1145/2407516.2407558.
Moghari, M.H., Abolmaesumi, P. “Global registration of multiple bone fragments using statistical atlas models: feasibility experiments”, In: Proc. of Annual Int. Conf. of the IEEE Eng. in Medicine and Biology Society, Vol. 2008, pp. 5374–5377. https://doi.org/10.1109/IEMBS.2008.4650429.
Morton, N.A., Maletsky, L.P., Pal, S., Laz, P. J. “Effect of variability in anatomical landmark location on knee kinematic description”, Journal of Orthopaedic Research. Orthopaedic Research Society, Vol. 25, No. 9, 2007, pp.1221-1230. https://doi.org/10.1002/jor.20396.
Mowry, S.E., Jammal, H., Myer, C., Solares, C.A., and Weinberger, P. “A Novel temporal bone simulation model using 3D printing techniques”, Otology & Neurotology, Vol. 36, 2015, pp. 1562-1565. https://doi.org/10.1097/MAO.0000000000000848.
Nakajima, Y., Tashiro , T., Okada, T., Sato, Y., Sugano, N.,. Saito, M., Yonenobu, K., Yoshikawa, H., Ochi, T., Tamura, S. “Computer-assisted fracture reduction of proximal femur using preoperative CT data and intraoperative fluoroscopic images”, Int. Congress Series, Vol. 1268, 2004, pp. 620-625. https://doi.org/10.1016/j.ics.2004.03.335.
Nealen, A., Igarashi, T., Sorkine, O., and Alexa, M. “Laplacian mesh optimization”, In Proc. of the 4th Int. Conf. on Computer Graphics and Interactive Techniques in Australasia and Southeast Asia, Kuala Lumpur, Malaysia, 2006, pp. 381-389. https://doi.org/10.1145/1174429.1174494.
Negi, S., Dhiman, S., and Sharma, R.K. “Basics, applications and future of additive manufacturing technologies: a review”, Journal of Manuf. Technology Research, Vol. 5, No. (1/2), 2014, pp.75-99.
Okada, T., Iwasaki, Y., Koyama, T., Sugano, N., Chen, Y.-W., Yonenobu, K., Sato, Y. “Computer-assisted preoperative planning for reduction of proximal femoral fracture using 3-D-CT data”, IEEE Trans. Bio-med. Eng, Vol. 56, Issues 3, 2009, pp. 749-759. https://doi.org/ 10.1109/TBME.2008.2005970.
Oliva, J.M., Perrin, M., and Coquillart, S. “3D reconstruction of complex polyhedral shapes from contours using a simplified generalized Voronoi diagram”, EUROGRAPHICS ′96 - J. Rossignac and F. Sillion (Guest Editors), Blackwell Publishers, Eurographics Association, Vol. 15, No. 3, 1996, pp. C-397 - C-408. https://doi.org/10.1111/1467-8659.1530397.
Oszwald, M., Westphal, R., Bredow, J., Calafi, A., Hufner, T., Wahl, F., Krettek, C., Gosling, T. “Robot-assisted fracture reduction using three-dimensional intraoperative fracture visualization: An experimental study on human cadaver femora”, Journal of Orthopaedic Research, Vol. 28, Issue 9, September 2010, pp. 1240-1244. https://doi.org/10.1002/jor.21118.
Otag, I., Tetiker, H., Tastemur, Y., Sabanciogullari, V., Kosar, M.I., Cimen, M. “Morphometric measurements of calcaneus; Boehler’s angle and bone length estimation”, Cumhuriyet University Faculty of Science Science Journal (CSJ), Vol. 38, No. 2, 2017. http://dx.doi.org/10.17776/ cumuscij.291995.
Paiva, W.S. “Application of the steriolithography technique in complex spine surgery”, Arquivos de Neuro-Psiquiatria, Vol. 65, No. 2B, 2007, pp. 443-445. http://dx.doi.org/10.1590/S0004- 282X2007000300015.
Papaioannou, G., Karabassi, A., Theoharis. T. “Reconstruction of three-dimensional objects through matching oftheir parts”, IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 24, No. 1, 2003, pp. 114-124. http://dx.doi.org/10.1109/34.982888.
Papaioannou, G., Schreck, T., Andreadis, A., Mavridis, P., Gregor, R., Sipiran, I., and Vardis, K. “From reassembly to object completion: A complete systems pipeline”, Journal on Computing and Cultural Heritage, Vol. 10, No. 2, 2017, pp. 8:1-8:22. https://doi.org/10.1145/3009905.
Park N, Lee J, Sung KH, Park MS, and Koo S. “Design and validation of automated femoral bone morphology measurements in cerebral palsy”, J. Digit. Imaging, Vol. 27, 2014, pp. 262-269.
Pauly, M., Gross, M., and Kobbelt, L.P. “Efficient Simplification of Point-Sampled Surfaces”, In Proc. of the IEEE Visualization. 27 Oct.-1 Nov. 2002. pp. 163-170. http://dx.doi.org/ 10.1109/VISUAL.2002.1183771.
Peltola, M.J., Vallittu, P.K., Vuorinen, V., Aho, A.A.J., Puntala, A. and Aitasalo, K.M.J. “Novel composite implant in craniofacial bone reconstruction”, European Archives of Oto-Rhino-Laryngology, Vol. 269, No. 2, 2012, pp. 623-628. http://dx.doi.org/10.1007/ s00405-011-1607-x.
Pham, D.T., and Gault, R.S. “A comparison of rapid prototyping technologies”, Int. Journal of Machine Tools and Manuf., Vol. 38, Issues 10–11, 1998, pp. 1257-1287. https://doi.org/ 10.1016/ S0890-6955(97)00137-5.
Qiang M, Chen Y, Zhang K, Li H, and Dai H. “Measurement of three-dimensional morphological characteristics of the calcaneus using CT image post-processing”, Journal of Foot Ankle Res., Vol. 7, No. 19, 2014, pp. 7-19. https://doi.org/10.1186/1757-1146-7-19.
Rajon, D.A., Patton, P.W., Shah, A.P., Watchman, C.J., and Bolch, W.E. “Surface area over-estimation within three-dimensional digital images and its consequence for skeletal dosimetry”, Medical Physics, Vol. 29, No. 5, 2002, pp. 682-693. https://doi.org/10.1118/1.1470207.
Ramirez, J.E., Coto, E. “Digital preoperative planning for long-bone fractures.” Modelos Computacionales en Ingeniería: Desarrollos Novedosos y Aplicaciones. 2010. SVMNI.
Razik, A., Harris, M., and Trompeter, A. “Calcaneal fractures: Where are we now?”, Strat Traum Limb Recon., Vol. 13, 2018, pp. 1-11. https://doi.org/10.1007/s11751-017-0297-3.
Rengier, F., Mehndiratta, A., von Tengg-Kobligk, H., Zechmann, C.M., Unterhinninghofen, R., Kauczor, H.U., Giesel, F.L. “3D printing based on imaging data: review of medical applications”, Int J CARS, Vol. 5, 2010, pp. 335-341. https://doi.org/10.1007/s11548-010-0476-x.
Rodríguez, J.A., Entezari, V., Iannotti, J.P., Ricchetti, E.T. “Pre-operative planning for reverse shoulder replacement: the surgical benefits and their clinical translation”, Ann Joint, Vol. 4. No. 4, 2019, pp. 1-15. http://dx.doi.org/10.21037/aoj.2018.12.09.
Ron, O., Joskowicz, L., Simkin, A., Milgrom, C. “Computer-based periaxial rotation measurement for aligning fractured femur fragments”, International Congress Series, Vol. 1230, 2001, pp. 307-313. https://doi.org/10.3109/10929080209146522.
Rüedi, T. P., Murphy, W. M. 2000. “AO principles of fracture management”, Thieme/AO publishing. Stuttgart.New York. ISBN: 3-13-117441-2 (GTV).
Sakaue, K. “Sex assessment from the talus and calcaneus of Japanese”, Bull. Natl. Mus. Nat. Sci. Ser. D, Vol. 37, 2011, pp. 35-48.
Salloum, C., Lim, C., Fuentes, L., Osseis, M., Luciani, A., Azoulay, D. “Fusion of information from 3D printing and surgical robot: An innovative minimally technique illustrated by the resection of a large celiac trunk aneurysm”, World Journal of Surgery, Vol. 40, No. 1, 2015, pp. 245-7. https://doi.org/10.1007/s00268-015-3218-y.
Salmi, M., Paloheimo, K.S., Tuomi, J., Wolff, J., Mäkitie, A. “Accuracy of medical models made by additive manufacturing (rapid manufacturing)”, Journal of Cranio-Maxillo-Facial Surgery Vol. 41, 2013, pp. 603-609. https://doi.org/10.1016/j.jcms.2012.11.041
Sanders, R. “Displaced intra-articular fractures of the calcaneus”, The Journal of Bone and Joint Surgery-American Volume, Vol. 82, No. 2, 2000, pp. 225-250. PMID: 10682732.
Sanders, R. “Fractures and fracture-dislocations of the calcaneus.” In Surgery of the Foot and Ankle”, edited by R Mann and M Coughlin Ed 7, 2, pp. 1422-1464, St Louis, Mosby, 1999.
Sanders, R., Fortin, P., DiPasquale, T., Walling, A.”Operative treatment in 120 displaced intraarticular calcaneal fractures. Results using a prognostic computed tomography scan classification”, Clinical Ortho Related Research, 1993, Vol. 290, pp.87-95. DOI: 10.1097/00003086-199305000-00012.
Schepers, T., Ginai, A.Z., Mulder, P.G., and Patka, P. “Radiographic evaluation of calcaneal fractures: to measure or not to measure”, Skeletal Radiology, Vol. 36, No. 9, 2007, pp. 847-52. https:// doi.org/ 10.1007/s00256-007-0330-6.
Scheuering, M., Rezk-Salama, C., Eckstein, C., Hormann, K., and Greiner, G. “Interactive repositioning of bone fracture segments”, In Proc. of the Vision Modelling and Visualization (VMV-01), Stuttgart, Germany, 2001, pp. 499-505.
Schmauss, D., Haeberle, S., Hagl, C., Sodian, R. “Three-dimensional printing in cardiac surgery and interventional cardiology: a single-centre experience“, European Journal of Cardio-Thoracic Surgery, Vol. 47, Issue 6, 2015, pp. 1044-1052. https://doi.org/10.1093/ejcts/ezu310.
Seiler, C., Weber. S., Schmidt, W, Fischer, F., Reimers, N., Reyes, M. “Automatic propagation for left and right symmetry assessment of tibia and femur. A computational anatomy based approach”, In proc. of the 9th annual meeting of CAOS (computer assisted orthopaedic surgery); final programme, Boston, MA, USA, Jun 17–20, 2009, pp 195-198.
Serej, N.D., Ahmadian, A., Mohagheghi, S., Sadrehosseini, S.M. “A projected landmark method for reduction of registration error in image‐guided surgery systems”, Int. J. Comput Assist Radiol Surg. (JCARS). Vol. 10. No. 5. pp. 541-54. 2014. https://doi.org/10.1007/s11548- 014-1075-z.
Sikorski, J.M., and Chauhan, S. “Computer-assisted orthopaedic surgery: Do we need CAOS?”, J. Bone Joint Surg (Br), Vol. 85-B, 2003, pp. 319-23. https://doi.org/10.1302/0301-620X. 85B3.14212.
Singare, S., Lian, Q., Wang, W.P., Wang, J., Liu, Y., Li, D., and Lu, B. “Rapid prototyping assisted surgery planning and custom implant design”, Rapid Prototyping Journal, Vol. 15, No. 1, 2009, pp. 19-23. https://doi.org/10.1108/13552540910925027.
Sodian, R., Weber, S., Markert, M., Rassoulian, D., Kaczmarek, I., Lueth, T.C., Reichart, B. and Daebritz, S. “Stereolithographic models for surgical planning in congenital heart surgery”, Annals of Thoracic Surgery, Vol. 83, No. 5, 2007, pp. 1854-1857. https://doi.org/10.1016/j.athoracsur.2006.12.004.
Spiriev, T., Nakov, V., Laleva, L., Tzekov, T. “OsiriX software as a preoperative planning tool in cranial neurosurgery: A step by step guide for neurosurgical residents”, Surgical Neurology Int. Vol. 8, No. 241, 2017. https://doi.org/10.4103/sni.sni_419_16.
Subburaj, K., Ravi1, B., and Agarwal, M. G. “3D shape reasoning for identifying anatomical landmarks”, Computer-aided design and applications, Vol. 5, Issues. 1-4, 2008, pp. 153-160. https://doi.org/10.3722/cadaps.2008.153-160.
Sugano, N. “Computer-assisted orthopedic surgery”, Journal of Orthopaedic Science, Vol. 8, 2003, pp. 442–448. https://doi.org/10.1007/s10776-002-0623-6.
Sun, S.P., Chou, Y.J., and Sue, C.C. “Full-scale 3D preoperative planning system for calcaneal osteotomy with a multimedia system”, Journal of Foot and Ankle Surgery, Vol. 48, 2009, pp. 528-539. https://doi.org/ 10.1053/j.jfas.2009.05.007.
Swift, K.G., Booker, J.D. “Manufacturing process selection handbook”, Oxford: Butterworth-Heinemann, 2013.
Tack, P., Victor, J., Gemmel, P., and Annemans, L. “3D printing techniques in a medical setting: a systematic literature review”, BioMedical Engineering OnLine, Vol. 15, No.115, 2016. https://doi.org/10.1186/s12938 016 0236 4.
Tarte, S.M., Talib, H., Gonzalez Ballester, M.A., and Langlotz, F. “Evaluating partial surface matching for fracture reduction assessment”, In Proc. of the 3rd IEEE Int. Symp. on Biomedical Imaging: Nano to macro, Arlington, USA, 2010, pp. 1-4. https://doi.org/10.1109/ISBI.2006.1624966.
Thomas, T.P., Anderson, D.D., Willis, A.R., Liu, P., Frank, M.C., Marsh, J.L., Brown, T.D. “A computational/experimental platform for investigating three-dimensional puzzle solving of comminuted articular fractures.” Comp. Methods Biomech. Biomed. Eng., Vol. 14, Issues 3, 2011, pp. 263-270. https://doi.org/10.1080/10255841003762042.
Tockus, L., Joskowicz, L., Simkin, A., Milgrom, C. “Computer-aided image-guided bone fracture surgery: Modeling, visualization, and preoperative planning.” Int. Conf. on Medical Image Comput. and Computer-Assisted Intervention. MICCAI 1998, pp. 29-38. https://doi.org/ 10.1007/BFb0056185.
Tsai, M.D., Hsieh, M.S., Jou, S.B. “Virtual reality orthopedic surgery simulator. Computers in Biology and Medicine, Vol. 31, Issues 5, 2001, pp. 333-351. https://doi.org/10.1016/S0010- 4825(01)00014-2.
Tsamoura, E., and Pitas, I. “Automatic color based reassembly of fragmented images and paintings.” IEEE Trans. on Image Proc., Vol. 19, No. 3, 2009, pp. 680-90. https://doi.org/10.1109/TIP.2009.2035840.
Üçoluk, G., and Toroslu, I.H. “Automatic reconstruction of broken 3-D surface objects.” Computers and Graphics, Vol. 23, No. 4, 1999, pp. 573-582. https://doi.org/10.1016/ S0097-8493 (99)00075-8.
Uddanwadikar, R., Uddanwadiker, V., and Chiddarwar, S. “Fabrication of accurate bone implant geometry using puzzle solving technqiue.” Proc. of the 1st Int. and 16th National Conf. on Machines and Mechanisms (iNaCoMM2013), IIT Roorkee, India, Dec 18-20, 2013.
Van Sint Jan S. Colour atlas of skeletal landmark definitions: guidelines for reproducible manual and virtual palpations. Churchill Livingstone, Elsevier, 2007.
Ventola, L. “Medical applications for 3D printing: current and projected uses.” Vol. 39, No. 10, 2014, pp. 704-711. PMID: 25336867.
Virzi, A., Marret, J.B., Muller, C., Berteloot, L., Boddaert, N., Sarnacki, S., and Bloch, I.” A new method based on template registration and deformable models for pelvic bones semi-automatic segmentation in pediatric MRI.” In Proc. of the Int. Symp. on Biomedical Imaging. 18-21 April 2017. Melbourne, VIC, Australia, pp 323-326. https://doi.org/10.1109/ ISBI.2017.7950529.
Vitković, N., Milovanović, J., Korunović, N., Trajanović, M., Stojković, M., Mišić, D. and Arsić, S. “Software System for creation of human femur customized polygonal models.” Computer Science and Information Systems, Vol. 10, No. 3, 2013, pp. 1473-1497. https://doi.org/ 10.2298/CSIS121004058V.
Vlachopoulos, L., Székely, G,, Gerber, C., Fürnstahl, P. “A scale-space curvature matching algorithm for the reconstruction of complex proximal humeral fractures.” Med Image Anal., Vol. 43, 2017, pp.142-156. https://doi.org/10.1016/j.media.2017.10.006.
Wang, T., Li, C., Hu, L., Tang P, Zhang, L., Du, H., Luan, S., Wang, L., Tan, Y. and Peng, C. “A removable hybrid robot system for long bone fracture reduction”, Bio-medical materials and engineering, Vol. 23, 2013, pp. S521-S529. https://doi.org/10.3233/BME-130836.
Wang, Y.T., Yang, XJ., Yan,B. Zeng, T.H., Qiu, Y.Y., and Chen, S.J. “Clinical application of three-dimensional printing in the personalized treatment of complex spinal disorders”, Chinese J. of Traumatology, Vol.19, Issues 1, 2016, pp. 31-34. https://doi.org/10.1016/j.cjtee.2015.09.009.
Weber CL, Pena V, Micali MK, Yglesias E, Rood SA, Scott JA, et al. “The role of the national science foundation in the origin and evolution of additive manufacturing in the united states”, Vol. 6, Institute for Defense Analyses, 2013.
Westphal, T., Winkelbach, S., Wahl, F., Gösling, T., Oszwald, M. Hüfner, T., Krettek, C. “Robot-assisted Long Bone Fracture Reduction”, Int. Journal of Robotics Research. Vol. 28, Issue 10, 2009, pp. 1259-1278. https://doi.org/10.1177/0278364909101189.
Willis, A., Anderson, D., Thomas, T., Brown, T., Marsh, J.L. “3D reconstruction of highly fragmented bone fractures”, In: Medical Imaging 2007: Image Processing, Proc. of the SPIE, Vol. 6512, 2007. https://doi.org/10.1117/12.708683.
Winkelbach, S., and Wahl, F.M. “Pairwise matching of 3D fragments using cluster trees”, Int. J. of Computer Vision, Vol. 78. No. 1, 2008, pp. 1–13. https://doi.org/10.1007/s11263-007-0121-5.
Winkelbach, S., Westphal, R., Goesling, T. “Pose estimation of cylindrical fragments for semi-automatic bone fracture reduction”, In: Michaelis, B., Krell, G. (Eds.), Pattern Recognition. In: Vol. 2781 of Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, 2003. pp. 566-573.
Winkelbach, S., Westphala, R., Gösling, T. “Automatic computation of reposition parameters of fractured long bones based on CT-analysis”, In: Proc. of Computer Assisted Radiology and Surgery Congress, Vol. 1256, 2003 (b). https://doi.org/10.1016/S0531-5131(03)00248-6.
Wu G. “ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion-Part II: shoulder, elbow, wrist and hand”, J. Biomech, Vol. 38, Issues 5, 2005, pp. 981-992. https://doi.org/10.1016/j.jbiomech.2004.05.042.
Wu, A.M., Shao, Z.X., Wang, J.S., Yang, X.D., Weng, W.Q., Wang, X.Y., Xu, H.Z., Chi, Y.L., Lin, Z.K. “The accuracy of a method for printing three dimensional spinal models”, PLoS ONE, Vol. 10, No. 4, e0124291. https://doi.org/10.1371/journal.pone.0124291.
Yao, R., Xu, G., Mao, S.S., Yang, H.Y, Sang, X.T., Sun, W., Mao, Y.L. “Three-dimensional printing: review of application in medicine and hepatic surgery”, Cancer Biology and Medicine, 2016. https://doi.org/10.20892/j.issn.2095-3941.2016.00.
Zachow, S., Zilske, M., and Hege, H.C. “3D reconstruction of individual anatomy from medical image data: Segmentation and geometry processing”, In Proc. of The 25th CADFEM Users’ Meeting. November 21-23, 2007, Congress Center Dresden, Germany. pp.1-11.
Zdravkovic, V., and Bilic, R. “Computer-assisted preoperative planning (CAPP) in orthopaedic surgery”, Computer Methods and Programs in Biomedicine, Vol. 32, 1990, pp. 141-146. https://doi. org/10.1016/0169-2607(90)90094-P.
Zhang, F., Yan, Z., Du, Z. “Preoperative setup planning for robotic surgery based on a simulation platform and Gaussian process”, In Proc. of the IEEE Int. Conf. on Mechatronics and Automation (ICMA). August 7-10, 2016. Harbin, China. https://doi.org/10.1109/ICMA.2016.7558682.
Zhang, K., Fan, F., Tu, M., Wang, Y.H., and Deng, Z.H. “Estimation of stature and sex from calcaneal measurements in Chinese”, Journal of Australian Journal of Forensic Sciences, Vol. 49. 2017, pp. 69-77. https://doi.org/10.1080/00450618.2015.1128967.
Zhang, K., Yu, W., and Manhein, M. “3D fragment reassembly using integrated template guidance and fracture-region matching”, In Proc. of the IEEE Int. Conference on Computer Vision (ICCV), Santiago, Chile, 2015, pp. 2138-2146. https://doi.org/10.1109/ICCV.2015.247.
Zhang, Y., Chen, Y., Qiang, M., Zhang, K., Li, H., Jiang, Y. and Jia, X. “Comparison between three-dimensional CT and conventional radiography in proximal tibia morphology”, Medicine, Vol. 97, No. 30, 2018, e11632. https://doi.org/10.1097/MD.0000000000011632.
Zheng, G. and Nolte, L.P. “Computer-assisted orthopedic surgery: current state and future perspective”, Front. Surg., Vol. 2, No. 66, 2015, pp. 1-14. https://doi.org/10.3389/fsurg.2015.00066.
Zhou, B., Willis, A., Sui, Y., Anderson, D.D., Brown, T.D., Thomas, T.P. “Virtual 3D bone fracture reconstruction via Inter-fragmentary surface alignment”, IEEE 12th Int. Conf. on Comp. Vision Workshops (ICCV Workshops), 2009(a). Kyoto, Japan. https://doi.org/10.1109/ICCVW.2009.5457502.
Zhou, B., Willis, A., Sui, Y., Anderson, D.D., Thomas, T.P., Brown, T.D. “Improving Inter-fragmentary alignment for virtual 3D reconstruction of highly fragmented bone fractures”, Medical Imaging: Image Processing, edited by Pluim, J.P.W. Dawant, B.M., Proc. of SPIE, Vol. 7259, 725934, 2009 (b). https://doi.org/10.1117/12.810967.
指導教授 賴景義(Jiing-Yih Lai) 審核日期 2019-5-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明