參考文獻 |
[1]. 郭文傑、李祺菁、董鍾明,”兩岸電子材料市場及技術競合分析”,工研院IEK化材組,2015
[2]. Liu, H., Du, Y., Deng, Y. & Ye, P. D. Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chem. Soc. Rev. 44, 2732–2743 (2015).
[3]. Lin, I.-K., Bai, H. & Wu, B.-J. Analysis of Relationship between Inorganic Gases and Fine Particles in Cleanroom Environment. Aerosol Air Qual. Res. 10, 245–254 (2010).
[4]. Leland Chang et al. Extremely scaled silicon nano-CMOS devices. Proc. IEEE 9, 1860–1873 (2003).
[5]. Richter, A. et al. Versatility of doped nanocrystalline silicon oxide for applications in silicon thin-film and heterojunction solar cells. Solar Energy Materials and Solar Cells 174, 196–201 (2018).
[6]. Han, C.-W. et al. Hydrogenated Microcrystalline Silicon Film Growth by Inductively Coupled Plasma–Chemical Vapor Deposition on ZrO 2 Gate Dielectric for Thin Film Transistors. Jpn. J. Appl. Phys. 45, 4365–4369 (2006).
[7]. Kim, W. et al. Paper-Based Surface-Enhanced Raman Spectroscopy for Diagnosing Prenatal Diseases in Women. ACS Nano 12, 7100–7108 (2018).
[8]. Chen, F. F. Physical mechanism of current-free double layers. Physics of Plasmas 13, 034502 (2006).
[9]. R.O. Dendy (ed.), Plasma Physics: An Introductory Course (Cambridge University Press, Cambridge, 1993)
[10]. Plasma Electronic.URL: https://www.plasma-electronics.com/chemical-vapor-deposition.html
[11]. Lebib, S. & Roca i Cabarrocas, P. Effects of ion energy on the crystal size and hydrogen bonding in plasma-deposited nanocrystalline silicon thin films. Journal of Applied Physics 97, 104334 (2005).
[12]. Venables, J. A. & Spiller, G. D. T. Nucleation and Growth of Thin Films. in Surface Mobilities on Solid Materials (ed. Binh, V. T.) 341–404 (Springer US, 1983). doi:10.1007/978-1-4684-4343-1_16
[13]. Chaudhary, D., Sharma, M., Sudhakar, S. & Kumar, S. Plasma Impedance Analysis: A Novel Approach for Investigating a Phase Transition from a-Si:H to nc-Si:H. Plasma Chem Plasma Process 37, 189–205 (2017).
[14]. Habuka, H. et al. Model on transport phenomena and epitaxial growth of silicon thin film in SiHCl3H2 system under atmospheric pressure. Journal of Crystal Growth 169, 61–72 (1996).
[15]. Sakurai, A., Saito, A. & Habuka, H. Surface and gas phase reactions induced in a trichlorosilane–SiH x system for silicon film deposition. Surface and Coatings Technology 272, 273–277 (2015).
[16]. Habuka, H., Sakurai, A. & Saito, A. By-Product Formation in a Trichlorosilane-Hydrogen System for Silicon Film Deposition. ECS J. Solid State Sci. Technol. 4, P16–P19 (2015).
[17]. Luo, P. et al. Effects of deposition pressure on the microstructural and optoelectrical properties of B-doped hydrogenated nanocrystalline silicon (nc-Si:H) thin films grown by hot-wire chemical vapor deposition. Microelectronics Journal 39, 12–19 (2008).
[18]. Matsuda, A. Microcrystalline silicon. Journal of Non-Crystalline Solids 338–340, 1–12 (2004).
[19]. Kushner, M. J. On the balance between silylene and silyl radicals in rf glow discharges in silane: The effect on deposition rates of a ‐Si:H. Journal of Applied Physics 62, 2803–2811 (1987).
[20]. Matsuda, A. Plasma and surface reactions for obtaining low defect density amorphous silicon at high growth rates. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 16, 365–368 (1998).
[21]. 張濟忠,”現代薄膜技術”,冶金工業出版社,2009
[22]. 王增福,”實用鍍膜技術”,電子工業出版社,2008
[23]. Moriaki Wakaki、周海憲、程云芳譯,”光學材料手冊”,化學工業出版社,2010
[24]. Physics and technology of amorphous-crystalline heterostructure silicon solar cells. (Springer, 2012).
[25]. Pearson, K. LIII. On lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 2, 559–572 (1901).
[26]. Hotelling, H. Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology 24, 417–441 (1933).
[27]. J. Hogenboom and L. Barina, "Principal component analysis and sidechannel attacks-master thesis;′ Master′s thesis, 2010.
[28]. Cristianini, N. & Shawe-Taylor, J. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. (Cambridge University Press, 2000). doi:10.1017/CBO9780511801389
[29]. Vapnik, V. N. 統計學習理論的本質. (淸華大學出版社, 2000).
[30]. The 5th Annual Conference of Taiwan′s Economic Empirics
[31]. Burges, C. J. C. [No title found]. Data Mining and Knowledge Discovery 2, 121–167 (1998).
[32]. 陳建勳,”非晶矽繞射光學元件的製作與分析”,國立中央大學物理研究所碩士論文,2005
[33]. Martins, R. et al. Role of ion bombardment and plasma impedance on the performances presented by undoped a-Si:H films. Thin Solid Films 383, 165–168 (2001).
[34]. Jagodzinski, H. H. P. Klug und L. E. Alexander: X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2. Auflage. John Wiley & Sons, New York-Sydney-Toronto 1974, 966 Seiten, Preis: £ 18.55. Berichte der Bunsengesellschaft für physikalische Chemie 79, 553–553 (1975).
[35]. Amor, S. B., Bousbih, R., Ouertani, R., Dimassi, W. & Ezzaouia, H. Correlation between microstructure and properties of hydrogenated Si thin films grown by plasma enhanced chemical vapor deposition under different hydrogen flow rates. Solar Energy 103, 12–18 (2014).
[36]. Bustarret, E., Hachicha, M. A. & Brunel, M. Experimental determination of the nanocrystalline volume fraction in silicon thin films from Raman spectroscopy. Appl. Phys. Lett. 52, 1675–1677 (1988).
[37]. Zhou, H. P. et al. Dilution effect of Ar/H 2 on the microstructures and photovoltaic properties of nc-Si:H deposited in low frequency inductively coupled plasma. Journal of Applied Physics 110, 023517 (2011).
[38]. Sriraman, S., Agarwal, S., Aydil, E. S. & Maroudas, D. Mechanism of hydrogen-induced crystallization of amorphous silicon. Nature 418, 62–65 (2002).
[39]. Das, C. & Ray, S. Power density in RF PECVD: a factor for deposition of amorphous silicon thin films and successive solid phase crystallization. J. Phys. D: Appl. Phys. 35, 2211–2216 (2002).
[40]. Smets, A. H. M. & van de Sanden, M. C. M. Relation of the Si H stretching frequency to the nanostructural Si-H bulk environment. Phys. Rev. B 76, 073202 (2007).
[41]. Finger, F. et al. Stability of microcrystalline silicon for thin film solar cell applications. IEE Proc., Circuits Devices Syst. 150, 300 (2003).
[42]. Hussain, S. Q. et al. Efficient light trapping for maskless large area randomly textured glass structures with various haze ratios in silicon thin film solar cells. Solar Energy 173, 1173–1180 (2018).
[43]. Habuka, H., Katayama, M., Shimada, M. & Okuyama, K. Nonlinear increase in silicon epitaxial growth rate in a SiHCl3H2 system under atmospheric pressure. Journal of Crystal Growth 182, 352–362 (1997).
[44]. Habuka, H. et al. Chemical process of silicon epitaxial growth in a SiHCl3–H2 system. Journal of Crystal Growth 207, 77–86 (1999).
[45]. Li, X. et al. Effect of deposition rate on the growth mechanism of microcrystalline silicon thin films using very high frequency PECVD. Optik 180, 104–112 (2019).
[46]. Goh, B. T., Wah, C. K., Aspanut, Z. & Rahman, S. A. Structural and optical properties of nc-Si:H thin films deposited by layer-by-layer technique. J Mater Sci: Mater Electron 25, 286–296 (2014).
[47]. Tabuchi, T., Toyoshima, Y., Fujimoto, S. & Takashiri, M. Remotely induced high-density hollow-anode plasma and its application to fast deposition of photosensitive microcrystalline silicon thin film with preferential orientation. AIP Advances 9, 055125 (2019).
[48]. Sharma, M., Juneja, S., Sudhakar, S., Chaudhary, D. & Kumar, S. Optimization of a-Si:H absorber layer grown under a low pressure regime by plasma-enhanced chemical vapor deposition: Revisiting the significance of the p/i interface for solar cells. Materials Science in Semiconductor Processing 43, 41–46 (2016).
[49]. Zhou, H. P. et al. Rapid and controllable a-Si:H-to-nc-Si:H transition induced by a high-density plasma route. J. Phys. D: Appl. Phys. 50, 385103 (2017).
[50]. Sriraman, S., Agarwal, S., Aydil, E. S. & Maroudas, D. Mechanism of hydrogen-induced crystallization of amorphous silicon. Nature 418, 62–65 (2002).
[51]. Shanks, H. et al. Infrared Spectrum and Structure of Hydrogenated Amorphous Silicon. phys. stat. sol. (b) 100, 43–56 (1980).
[52]. Losurdo, M. et al. Enhanced absorption in Au nanoparticles/a-Si:H/c-Si heterojunction solar cells exploiting Au surface plasmon resonance. Solar Energy Materials and Solar Cells 93, 1749–1754 (2009).
[53]. Naikal, N., Yang, A. Y. & Shankar Sastry, S. Informative feature selection for object recognition via Sparse PCA. in 2011 International Conference on Computer Vision 818–825 (IEEE, 2011). doi:10.1109/ICCV.2011.6126321
[54]. Vapnik, V. N. The nature of statistical learning theory. (Springer, 2000).
[55]. Dingari, N. C., Barman, I., Myakalwar, A. K., Tewari, S. P. & Kumar Gundawar, M. Incorporation of Support Vector Machines in the LIBS Toolbox for Sensitive and Robust Classification Amidst Unexpected Sample and System Variability. Anal. Chem. 84, 2686–2694 (2012).
[56]. Huang, Z., Chen, H., Hsu, C.-J., Chen, W.-H. & Wu, S. Credit rating analysis with support vector machines and neural networks: a market comparative study. Decision Support Systems 37, 543–558 (2004).
|