參考文獻 |
[1] 曾婉如,“鈦金屬市場現況與應用商機“,中工高雄會刊,第21卷,第1期。
[2] 洪祖昌,“從電子束焊接談技術引進與研究發展”,機械工業,66-71頁,1985。
[3] G. LaFlamme and J. Knoefel, “Application of electron beam welding,” International Conference on Power Beam Technology, Brighton, 10-12 September, Abington, Cambridge, pp. 59-74,1986
[4] R. I. Stephens, A. Fatemi, R. R. Stephens, and H. O. Fuchs, “Metal Fatigue in Engineering,” John Wiley & Sons, New York, 2nd ed., 2000.
[5] Fatigue design handbook, 2nd ed., Society of Automotive Engineers, Inc., 1988.
[6] P. C. Paris and F. Erdogan, “A critical analysis of crack propagation law,” Journal of Basic Engineering, Vol. D85, pp. 528-534, 1963.
[7] R. G. Forman, V. E. Kearney and R. M. Engle, “Numerical analysis of crack propagation in cyclic-loaded structures,” Journal of Basic Engineering, Vol. D89, No. 3, pp. 459-464, 1967.
[8] O. E. Wheeler, “Spectrum loadings and crack growth,” Journal of Basic Engineering, Vol. D94, No. 1, pp. 181-186, 1972.
[9] J. Willenborg, R. M. Engle, and H. A. Wood, “A crack growth retardation model using an effective stress concept,” AFFDL TM-71-1FBR, Jan. 1971.
[10] W. Elber, "Fatigue crack propagation," Ph. D. Thesis, University of New South Wales, Australia, 1968.
[11] J. C Newman, Jr., “A crack closure model for predicting fatigue crack growth under aircraft spectrum loading,” in Method and Model for Predicting Fatigue Crack Growth under Random Loading, ASTM STP 748, American Society for Testing and Materials, Philadelphia, pp. 53-84, 1981.
[12] I. M. Austen and E. F. Walker, “Corrosion fatigue crack growth rate information for offshore life prediction,” Steel in Marine Structure, C. Noordhoek and J. de Back, Ed., p. 859, 1987.
[13] “Structural Welding Code - Titanium” American National Standard AWS D 1.9, American Welding Society, 2007.
[14] 洪胤庭,“純鈦及鈦合金特性及製程介紹”,中工高雄會刊,第21卷,第1期,16-18頁。
[15] 朱建平、陳瑾惠、簡嘉毅,“鈦-鉬合金熱處理後拉伸疲勞性質研究”,碩士論文,國立成功大學材料科學及工程學系所,2005。
[16] 陸美源,“ Ti-6Al-4V與Ti-15V-3Cr-3Al-3Sn 銲件之高溫缺口拉伸性質研究”,國立台灣海洋大學,碩士論文,2011。
[17] 賴耿陽,“金屬鈦(理論與應用) ”,台南:復漢出版社,50-56頁,2000
[18] 丁逸勳,”Ti-6Al-4V、SP700銲件機械性質特性”,碩士論文,國立台灣海洋大學材料工程所,2006。
[19] 丁逸勳,”環境效應對雙相α+β鈦合金雷射銲件之疲勞裂縫成長行為”,博士論文,國立台灣海洋大學材料工程所,2011。
[20] 張世宗,”Ti-15V-3Cr-3Sn-3Al缺口拉伸性質及疲勞裂縫成長行為”,碩士論文,國立台灣海洋大學材料工程所,2012。
[21] H. U. Qi, ”Fatigue crack growth of titanium alloy joints by electron beam welding,” Rare Metals, pp. 1-6, 2013.
[22] L. B. Ji, ”Morphologies at fatigue crack tip of Ti-6Al-4V electron beam welding joints,” Zhongguo Youse Jinshu Xuebao/Chinese Journal of Nonferrous Metals, Vol. 21, No. 1, pp. 102-109, 2011.
[23] T. S. Balasubramanian, ”Fatigue performance of gas tungsten arc, electron beam, and laser beam welded Ti-6Al-4V alloy joints,” Journal of Materials Engineering and Performance, Vol. 20, No. 9, pp. 1620-1630, 2011.
[24] K. P. Rao, ”Fracture toughness of electron beam welded Ti-6Al-4V,” Journal of Materials Processing Technology, Vol. 199, No. 1, pp. 185-192, 2008.
[25] K. K. Murthy, ”Fracture toughness of Ti-6Al-4V after welding and post weld heat treatment ” Welding Journal, Vol. 76, No. 2, pp. 81s-91s, 1997.
[26] J. L. Barreda, ”Influence of the filler metal on the mechanical properties of Ti-6Al-4V electron beam weldments,” Vacuum, Vol. 85, No. 1, pp. 10-15, 2010.
[27] A. Wohler, “Uber die Festigkeitversuche mit Eisen und Stahl,” Zeitschrift fur
Bauwesen, Vol. VIII, X, XIII, XVI, and XX, 1860/70, Englishaccount of this work is in Engineering, Vol. 11, 1871.
[28] A. A. Griffith, “The Phenomena of Rupture and Flow in Solids,” Phil. Trans. Roy. Soc. Of London, A221, pp.163-197.
[29] G. R. Irwin, "Fracture Dynamics Fracturing of Metals," American Society for Metals, Cleveland, OH, 1949, pp.147-166.
[30] H. L. Ewalds and R. J. H. Wanhill, Fracture Mechanics, First Published in 1984, p. 13.
[31] G. R. Irwin, “Analysis of Stresses and Strains Near The End of a Crack Traversing a Plate,” Journal of Applied Mechanics, Trans. of ASME, Vol. E24, 1957, pp.361-364.
[32] T. L. Anderson, “Fracture Mechanics: Fundamentals and Applications,” 3rd edition, CRC Press, 2005.
[33] R. I. Stephens, A. Fatemi, R. R. Stephens, H. O. Fuchs, “Metal Fatigue in Engineering,” 2nd edition, John Wiley & Sons, 2001, pp. 122-176.
[34] “Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials,” Annual Book of ASTM Standards, E 399-90.
[35] E. Zahavi, “Fatigue design: Life Expectancy of Machine Parts,” CRC Press. 1996.
[36] W. Elber, “Fatigue Crack Closure under Cyclic Tension,” Engineering Fracture Mechanics, Vol. 2, No. 1, 1970, pp. 37-45.
[37] W. Elber, “The Significance of Fatigue Crack Closure,” Damage Tolerance in Aircraft Structures, ASTM STP 486, 1971, pp. 230-242.
[38] “Standard Test Method for Measurement of Fatigue Crack Growth Rates,” ASTM E647-11.
[39] S. Suresh, Fatigue of Materials, Cambridge University Press, 1991, pp. 222-271.
[40] “Method of Vickers Hardness Test,” CNS 2115 Z8004,Chinese National Standards, Taiwan, 1983.
[41] 羅志明,”Ti-6Al-4V 鈦合金電子束銲件之疲勞裂縫成長研究”,碩士論 文,國立中央大學機械工程所,2018。
[42] “Standard Test Methods for Tension Testing of Metallic Materials,” ASTM E8,
American Society for Testing and Materials, United States of America, 2012.
[43] V. Sinha, ”An investigation of short and long fatigue crack growth behavior of Ti-6Al-4V,” Materials Science and Engineering: A, Vol. 287, Iss. 1, 2000, pp.30-42.
[44] S. Li, ”Effect of tensile overload on fatigue crack growth behavior in DP780 dual phase steel,” International Journal of Fatigue, Vol. 106, 2018, pp.49-55
|