以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:129 、訪客IP:18.227.114.218
姓名 金家興(Chia-Hsing Chin) 查詢紙本館藏 畢業系所 機械工程學系在職專班 論文名稱 熱處理對Custom 475 鑄造不銹鋼機械性質的影響
(Effects of Heat Treatment on the Mechanical Properties of Custom 475 Stainless)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 本研究主旨是探討美國卡本特公司所生產之Custom 475不銹鋼材,藉由鑄造製程取得試片後,利用DSC熱差分析尋找出適合之熱處理參數包括固溶條件以及時效條件進行熱處理。熱處理後對試片進行進一步分析包括硬度、拉伸、X光繞射結構分析與微觀金相分析,另外針對拉伸後試片之破斷面也以SEM進行微觀分析。
實驗結果得知當時效溫度越高材料所得之析出相就越多相對的硬度就越高。經XRD分析觀察發現時效溫度500 ℃熱處理後有一明顯析出物繞射峰產生、而時效溫度400 ℃與450 ℃則未產生析出相繞射峰,研判該時效溫度過低。從金相顯微結構觀察得知熱處理後其組織為板條狀麻田散鐵。從拉伸性質比較分析得之,未熱處理試棒強度並不高,只有降伏強度589 MPa、抗拉強度955 MPa及伸長率約13 %,熱處理後降伏強度及抗拉強度分別提升至1300 MPa及1460 MPa以上,本實驗做兩組時效條件一為硬度值較高之時效條件500 ℃、二為硬度值相對較低的時效條件400 ℃,其結果為硬度較高試棒之斷面呈現脆性破裂,而硬度較低的試棒斷面呈現延性破裂,此結果與拉伸機械性質成正比關係。
摘要(英) The purpose of this study is to explore the process condition of heat treatment for Custom 475 stainless steel produced by Carpenter in the United States. DSC thermal analysis was used to find the phase transformation temperature for setting the suitable heat treatment parameter, including the solid solution and aging treatment. After heat treatment, the microstructure and mechanical properties of all samples were characterized by XRD analysis, metallographic observation, hardness test, and tensile test, respectively. In addition, the fracture surface of tensile tested samples was microscopically examined by SEM.
The results of hardness test show that higher aging temperature would form more precipitates in the material and results in a higher hardness. XRD analysis presents that one diffraction peak corresponding to the precipitate occurred after aging at 500 ℃. However, the aging temperature at 400 ℃ and 450 ℃ seems too low to obtain enough precipitates and cannot be resolved in XRD pattern. Meanwhile, the results of metallographic observation confirm that the matrix microstructure of heat treated sample is lath martensite.
Results of tensile test reveal that the effect of heat treatment can significantly improve the mechanical properties from the yield strength of 589 MPa, tensile strength of 955 MPa, and the elongation is about 13 % up to the yield strength of 1300 MPa and tensile strength of 1460 MPa. Two aging conditions, 500 ℃/6 h and 400 ℃/6 h, were used in this study for comparing their tensile ductility. The results show that, the sample after aging at higher temperature can reach higher hardness but presents brittle fracture. On contrary, the sample after aging at lower temperature exhibits relative lower hardness and ductile fracture. These results are in good agreement with the results of tensile test.
關鍵字(中) ★ Custom 475不銹鋼材
★ 鑄造
★ 熱處理
★ 機械性質關鍵字(英) ★ Custom 475 stainless steel
★ Casting
★ Heat treatment
★ Mechanical properties論文目次 目錄
摘要 I
Abstract II
致謝 IV
目錄 V
表目錄 IX
圖目錄 X
第一章 研究背景 1
1-1 前言 1
1-2 研究動機 2
第二章 文獻回顧 3
2-1 不鏽鋼種類 3
2-1-1 沃斯田鐵不銹鋼 3
2-1-2 肥粒鐵不銹鋼 4
2-1-3 麻田散鐵不銹鋼 4
2-1-4雙相不銹鋼 5
2-1-5析出硬化不銹鋼 5
2-2 合金元素 6
2-2-1矽(Silicon) 6
2-2-2鎳(Nickel) 6
2-2-3鈷(Cobalt) 7
2-2-4錳(Manganese) 7
2-2-5鉻(Chromium) 8
2-2-6鉬(Molybdenum) 8
2-2-7鋁(Aluminum) 8
2-3熱處理 8
2-3-1 固溶處理 9
2-3-2 深冷處理 9
2-3-3 時效處理 10
2-4相變化 10
2-4-1麻田散鐵型相變化 11
2-4-2析出型相變化 11
2-4-3 有序化相變化 12
2-5 破壞行為 12
2-5-1 延性破壞 13
2-5-2 脆性破壞 13
第三章 實驗步驟 24
3-1 合金熔鑄 24
3-2熱性質分析 25
3-3熱處理 25
3-4 組織結構分析 26
3-4-1光學顯微鏡(OM) 26
3-4-2 X光繞射儀(XRD) 27
3-4-3 掃描式電子顯微鏡(SEM) 27
3-4-4 立體顯微鏡 28
3-5 機械性質分析 28
3-5-1 硬度試驗 28
3-5-2 拉伸試驗 28
第四章 結果與討論 39
4-1 熱差分析 39
4-1-1 鑄造後DSC 39
4-1-2 固溶深冷後DSC 39
4-2 微觀結構分析 40
4-2-1 X光繞射分析 40
4-2-2 顯微組織分析 41
4-3 機械性質分析 41
4-3-1 硬度試驗分析 42
4-3-2 拉伸試驗分析 42
4-4 拉伸試片破斷面分析 43
4-4-1 巨觀分析 43
4-4-2 微觀分析 44
第五章 結論 55
第六章 參考文獻 56
表目錄
表2- 1 沃斯田鐵不銹鋼成分 15
表2- 2 肥粒鐵不銹鋼成分 16
表2- 3 麻田散鐵不銹鋼成分 17
表2- 4 析出硬化型不銹鋼成分 18
表2- 5 鐵基合金之麻田散鐵晶體結構 18
表3- 1 Custom原廠475成份範圍 29
表3- 2熱處理製程稱呼表 29
圖目錄
圖2- 1不銹鋼系列組織圖 19
圖2- 2 Fe-Cr與Fe-Ni二元合金相圖 19
圖2- 3 雙相不銹鋼顯微組織 20
圖2- 4 添加合金元素含量與抗拉強度之關係圖 20
圖2- 5 Mn C元素沃斯田鐵與肥粒鐵間固溶量差異 21
圖2- 6 二元合金鋼的析出型相變化 21
圖2- 7 二元合金的有序相變化示意圖 22
圖2- 8 五種常見有序化結構 22
圖2- 9 不同型態對金屬斷裂面空渦之影響 23
圖2- 10 脆性破裂示意圖 23
圖3- 1 實驗流程圖 30
圖3- 2 預熱箱型爐 31
圖3- 3 試棒陶殼 31
圖3- 4 熱示差掃描分析儀STA 449 F3 Jupiter® 32
圖3- 5 熱示差掃描分析儀 DSC 1 32
圖3- 6 熱處理實驗流程圖 33
圖3- 7 光學顯微鏡 33
圖3- 8 小型切割砂輪機 34
圖3- 9 熱鑲埋機 34
圖3- 10 研磨拋光機 35
圖3- 11 X光粉末繞射儀 35
圖3- 12 掃描式電子顯微鏡 36
圖3- 13 立體顯微鏡 36
圖3- 14 維氏硬度機 37
圖3- 15 ASTM E8鑄造拉力試棒規範 37
圖3- 16 拉伸試驗機 38
圖4- 1 鑄造後高溫DSC 45
圖4- 2 固溶深冷後DSC 45
圖4- 3 鑄造後與固溶深冷後之XRD 46
圖4- 4 各時效熱處理後之XRD 46
圖4- 5 鑄造後和固溶深冷後OM與SEM影像 47
圖4- 6 時效400 ℃/6 hr後和時效500 ℃/6 hr後OM影像 48
圖4- 7 各時效後硬度值 49
圖4- 8 鑄造後與固溶深冷應力應變圖 50
圖4- 9 時效400 ℃/6 hr後與時效500 ℃/6 hr後應力應變圖 50
圖4- 10 時效400 ℃/6 hr後和時效500 ℃/6 hr後拉力試棒整體形貌 51
圖4- 11 時效400 ℃/6 hr後和時效500 ℃/6 hr後橫截破斷面巨觀形貌 52
圖4- 12時效400 ℃/6 hr後經拉伸試驗後破斷面SEM影像 53
圖4- 13時效500 ℃/6 hr後經拉伸試驗後破斷面SEM影像 54參考文獻 [1] A.F. Roweliffe, J.P. Robertson, R.L. Kluch, K. Shiba, D.J. Alexander, M.L. grossback and S. Jitsukawa, “Fracture toughness and tensile behavior of ferritic steels irradiated at low temperature”, Journal of Nuclear Materials, pp. 1275-1279, 1998.
[2] P. Rodney, “Scientific American inventions and discoveries”, United States of America, pp.380, 2004.
[3] 王繼敏,不鏽鋼與金屬腐蝕,科技圖書股份有限公司,pp.503,1992年.
[4] 蘇敏賢,漫談不銹鋼粉末冶金,pp.15-33,1983年.
[5] Properties and selection, “Stainless Steels Tool Materials and Special-Purpose Metals”, ASM Metals Handbook , pp.8, 1975.
[6] Properties and selection, “Stainless Steels Tool Materials and Special-Purpose Metals”, ASM Metals Handbook , pp.6, 1975.
[7] Properties and selection, “Stainless Steels Tool Materials and Special-Purpose Metals”, ASM Metals Handbook , pp.105, 1975.
[8] Properties and selection, “Stainless Steels Tool Materials and Special-Purpose Metals”, ASM Metals Handbook , pp.29, 1975.
[9] D. Peckner and I. Bernstein, “Handbook of stainless steels”, New York, pp1-6, 1997.
[10] J.R. Yang, T. YU and C.H. Wang , “Martensitic transformations in AISI 440C stainless steel”, Materials Science and Engineering, pp276-280, 2006.
[11] D. Peckner and I. Bernstein, “Handbook of stainless steels”, New York, pp1-7, 1997.
[12] 邱江明,不鏽鋼的種類與特性,工業材料,pp.78-98,1995年.
[13] Si-Yuan Lu, Ke-Fu Yao and Yun-Bo Chen, “Effects of automatizing temperature on the microstructure and electrochemical behavior of a martensitic stainless steel”, Journal of Applied Electrochemistry, pp.375-383, 2015.
[14] Yusuf Kayali, Lbrahim Giines and Sinan Ulu , “Diffusion Kinetics of borided AISI 52100 and AISI 440C steels”, Vacuum, vol. 86, pp. 1428-1434, 2012.
[15] J.R. Yang, T. YU and C.H. Wang , “Martensitic transformations in AISI 440C stainless steel”, Materials Science and Engineering, pp276-280, 2006.
[16] The International Molybdenum Association, “Practical Guidelines for the Fabrication of Duplex stainless steel”, 2009.
[17] X.P. Ma, L.J. Wang, B. Qin, C.M. Liu and S.V. Subramanian, “Effect of N on microstructure and mechanical properties of 16Cr5NiMo martensitie stainless steel”, Materials and Design, Vol. 34, pp.74-81, 2012.
[18] 中國材料科學學會材料手冊邊審委員會,鋼鐵材料手冊,中國材料科學學會,pp.78-98,1998年.
[19] 張錫綸,鋼鐵材料選用手冊,科技圖書股份有限公司,pp.24-26,1990年.
[20] 沈保羅,工程材料,新文京開發初出版有限公司,pp.221,2002年.
[21] Shoujin Sun and Martin Pugh , “Mangnese partitioning in dual-phase steel during”, Materials Science and Engineering A276, pp.167-174, 2000.
[22] E. Navara, B. Bengtsson and K.E. Easterling, “Austenite Formation in Manganess-Partitioning Dual-Phase Steel”, Material Science and Technology, Vol. 2, No. 12, pp.1196-1201, 1986.
[23] T.J. Mesquita, E. Chauveau, M. Mentel, N. Kinsman and R.P. Nogueira, “influence of MO alloying on pitting corrosion of stainless steels used as concrete reinforcement”, pp.173-178, 2013.
[24] D.A. Porter and K.E. Easterling,“Easterling, Phase Transformations in Metals and Alloys”, Nelson Thornes, 2008.
[25] 黃振賢,機械材料,新文京開發,pp.195-229,2003年.
[26] 日原政彥,粉模具的品質改善為目的之材料選擇與事例,台灣金屬熱處理學會,pp.64-72,2015年.
[27] W.D. Callister, “Fundamentals of materials science and engineering”, London, 2000.
[28] D.A. Porter, K.E. Easterling and M. Sherif, “Phase Transformations in Metals and Alloys”, Boca Raton, CRC press, 2009.
[29] W.A. Soffa and D.E. Laughlin, “Acta Metall”, 1989.
[30] 林郁珊,以方位影像顯微學分析鐵錳鋁合金內沃斯田體晶粒的麻田散體相變化,碩士論文,國立台灣科技大學,2014年.
[31] D.A. Porter and K.E. Easterling,“Easterling, Phase Transformations in Metals and Alloys”, Nelson Thornes, 2008.
[32] R. Becker and R.E. Smelser, “The effect of void shape on void growth and ductility in axisymmetric tension tests”, Metallurgical Transactions A, pp853-861, 1989.
[33] F. Ebrahimi and H.K. Seo, “Ductile Crack Initiation in Steel”, Acta Mater, Vol.44, no. 2, pp.831-843, 1996.
[34] 機械工程手冊編輯委員會,材料測試與分析,五南圖書出版股份有限公司,2002。
[35] T.S. Shih and J.Y. Wang, “Variation of Inclusions in Cast Steel with mold Types and Its Effect on Properties”, AFS Transactions, Vol.98, pp.105-113, 1990.
[36] 李勝隆,工程材料學,新北市,高立圖書,pp.243,2015年
[37] Easterling, Kenneth. “Introduction to the physical metallurgy of welding”. Elsevier, pp104-105, 2013
[38] L. Engel and H. K, “An Atlas of Metal Damage”, pp.62-76, 1970
[39] K.P. Datta, “Sharp Crack and Blunt Notch Toughness Behavior of Quenched and Tempered AISI 4340 Steel”, Material Science and Engineering, Vol. 51, pp.241-251, 1981.
[40] G.G. Chell, “Developments in Fracture Mechanics”, Applied Science Publishers, 1981.
指導教授 鄭憲清(Shian Ching Jang) 審核日期 2019-6-25 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare