博碩士論文 105323048 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:18.220.97.161
姓名 李貴智(LI,GUEI-JHIH)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 粉床熔融成型積層製造回收系統之系統操作條件對粉末篩分效率影響
相關論文
★ 筆記型電腦改良型自然對流散熱設計★ 移動式顆粒床過濾器濾餅流場與過濾性能之研究
★ IP67防水平板電腦設計研究★ 汽車多媒體導航裝置散熱最佳化研究
★ 流動式顆粒床過濾器三維流場觀察及能性能測試★ 流動式顆粒床過濾器冷性能測試
★ 流動式顆粒床過濾器過濾機制研究★ 二維流動式顆粒床過濾器內部配置設計研究
★ 循環式顆粒床過濾器過濾性能研究★ 流動式顆粒床過濾器之流場型態設計與研究
★ 流動式顆粒床過濾器之流動校正單元設計與分析研究★ 流動式顆粒床過濾器之雙葉片型流動校正單元設計與冷性能過濾機制研究
★ 稻稈固態衍生燃料成型性分析之研究★ 流動式顆粒床過濾器之不對稱葉片設計與冷性能過濾機制研究
★ 流動式顆粒床過濾器之滾筒式粉塵分離系統與冷性能過濾及破碎效應研究★ 稻稈固態衍生燃料加入添加物成型性分析之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 金屬積層製造為目前汽車、航太、軍事工業等領域致力發展的技術,為了符合當今工業應用的需求,金屬積層製造逐漸往大型化、自動化的方向發展,但由於粉末床熔融成型技術(Powder Bed Fusion, PBF)所使用的金屬粉末造價高昂、要求極高,為了降低原料使用成本,本研究研發出一款以長時間運轉為訴求的自動化粉末回收系統,參考業界所需的粉末處理量進行設計,本研究使用氣體輸送的方式減少輸送過程對粉末造成的磨損,待回收的金屬粉末將和輸送氣體一同進入篩分系統,以實驗的方式針對整體系統進行整合,為了深入了解系統效能,以篩分效率、篩分面積作為評估效能優劣的標準。
在篩分過程中奈米級粉末容易產生篩網堵塞,因此加入超音波振動,測試超音波功率對於篩分過程的影響,找出最適用於自動化粉末回收系統的超音波功率。
使用最佳超音波功率搭配五種粉末質量流率(100、125、150、175、200 g/min)與不同輸送氣體流量(30、32.5、35、37.5、40、42.5、45 m3/hr)進行實驗,觀察不同系統前端操作條件對於系統效能的影響,以篩分效率評估系統效能,並以篩分面積進行佐證。
本研究利用粉末的累積質量與影像分析方法計算篩分效率與篩分面積,實驗結果證實篩分面積與篩分效率呈現正比,在系統運轉過程中搭配適合的超音波功率、粉末質量流率與輸送氣體流量,能有效的進行回收粉末與廢棄粉末的分類,因此本套自動化粉末回收系統在實際應用上能降低粉末床熔融成型技術所耗費的原料成本。
摘要(英) Metal additive manufacturing is a technology that is currently being developed in the fields of automobile, aerospace, military industry, etc. In order to meet the needs of today′s industrial applications, but due to the metal powder is expensive and extremely demanding. In order to reduce the cost of raw materials, this research has developed an automated powder recovery system.
Nano-sized powders are prone to screen clogging during sieving, so ultrasonic vibration is added to test the effect of ultrasonic power on the sieving process to find the best ultrasonic power for the systems.
Use the best ultrasonic power with five powder mass flow rates and different gas flow rate, Experiments were carried out to observe the effects of different system front-end operating conditions on system performance, and the efficiency of the system was evaluated by screening efficiency, and the screening area was used for evidence.
In this study, the cumulative mass of the powder and the image analysis method were used to calculate the screening efficiency and the screening area. The experimental results confirmed that the screening area was proportional to the screening efficiency, and the appropriate ultrasonic power, powder mass flow rate and the system were used during the operation of the system. By conveying the gas flow rate, the classification of recycled powder and waste powder can be effectively carried out. Therefore, the automatic powder recovery system of this set can reduce the raw material cost of the powder bed melt molding technology in practical application.
關鍵字(中) ★ 積層製造
★ 粉末回收
★ 粉末篩分
關鍵字(英)
論文目次 摘要 I
英文摘要 II
目錄 III
附圖目錄 IV
附表目錄 VI
第一章 緒論 1
1.1前言 1
1.2積層製造技術發展與特性 2
1.3現有技術發展困境 6
1.4文獻回顧 8
1.5研究動機 10
1.6論文架構 12
第二章 實驗方法與原理 24
2.1實驗設備 24
2.2實驗步驟 28
2.3分析方法 31
2.3.1 質量變化 31
2.3.2 影像分析方法 32
2.3.3 篩分效率計算方法 32
2.3.4篩分面積計算方法 33
第三章 結果與討論 52
3.1在粉末篩分系統中加入超音波振動之篩分效能差異 52
3.1.1氣體流量35 m3/hr之超音波功率測試 52
3.1.2氣體流量45 m3/hr之超音波功率測試 53
3.2不同系統操作條件對於篩分性能之影響 54
3.2.1不同氣體流量之篩分效率討論 54
3.2.2不同氣體流量之篩分面積討論 56
3.2.3不同粉末質量流率之篩分效率討論 56
3.2.4不同粉末質量流率之篩分面積討論 57
第四章 結論 68
參考文獻 70
參考文獻 1. Wohlers T. and Gornet T., “History of additive manufacturing,” Wohlers Report,2014
2. ASTM. ASTM F2792-10 Stand Terminology For Additive Manufacturing Technologies.
3. Hull C. W., “Apparatus for production of three-dimensional objects by stereolithography,” U.S. Patent ,4575330 A,1986.
4. Feygin M. and Pak S. S., “Laminated object manufacturing apparatus and method,”U.S. Patent,5876550 A, 1988.
5. Crump S. S., “Apparatus and method for creating three-dimensional object,” U.S. Patent,5121329 A, 1989
6. Agarwala M., Bourell D., Beaman J.,Marcus H., and Barlow J., “Durect selective laser sintering of metals,” International Materials Reviews, pp.315-360, 2015.
7. Sachs E. M., Haggerty J. S., Cima M. J., and Williams P. A., “Three-dimensional printing techniques,” U.S. Patent,5204055 A, 1989.
8. Sames W. J., List F. A., Pannala S., Dehoff R. R., and Babu S. S. “The metallurgy and processing scice of metal additive manufacturing,” Rapid Prototyping Journal, 1,pp.26-36 1995.
9. Rhodes M., “Introduction to Particle Technology,” John Wiley and Sons: New York, 1998.
10. Soldinger M., “Influence of particle size and bed thickness on the screening process,” Minerals Engineering, 13, pp.297-312, 2000.
11. Pingping W., “Flux of granular particles through a shaken sieve plate,’’ Scientific Reports, 2015 .
12. Webb C., Li J., Pandiella S. S., and Campbell G. M., “A numerical simulation of separation of crop seeds by screening - effect of particle bed depth,” Food and Bioproducts Processing, 80, pp.109-117, 2002.
13. Yekeler M., Ciftci M., Igur Ulusoy and Alper Ozken. “Correlation of the Particle Size Distribution Parameters with Sieving Rate Constant,” Particulate Science and Technology, 32, pp.118-122, 2014.
14. Abou-chakra H., Tuzun U., Bridle I., Leaper M., Bradley M. S. A. and Reed A. R. “Assessing the potential of a fine powder to segregate using laser diffraction and sieve particle size measuring techniques,” Advanced Powder Technology, 14, pp.167-176, 2003.
15. Victor G., Efim S. and Israel J. “Efficiency of Solid Particle Screening as a Function of Screen Slot Size, Particle Size, and Duration of Screening-The theoretical Approach,” Int. J. Miner. Process, 52, pp.261-272, 1998
16. Nikolay K. Tolochko, Sergei E. Mozzharov, Igor A. Yadroitsev, Tahar Laoui,Ludo Froyen, Victor I. Titov and Michail B. Ignatiev. “Balling process during selective laser treatment of powder,” Rapid Prototyping Journals, 10, pp.78-87, 2004.
17. Zhongjun Y., Hang Z., and Tian H., “Simulation of particle flow on an elliptical vibrating screen using the discrete element method,’’ Powder Technology, 302, pp.443–454, 2016.
18. Jianzhang X. and Xin T., “Characteristics and efficiency of a new vibrating screen with a swing trace,” Particuology, 11, pp.601-606, 2013.
19. Bonziony J., “On a certain hypothesis concerning the process of screening of granular bodies,” Bull.Acad.Pol.Sci, 8, pp.99-106, 1960.
20. Kaye B. H., “Investigation into the possibilities of developing a rate method of sieve analysis,” Powder Metallurgy, 5, pp.199-217, 1962.
21. Li J., Webb C., Pandiella S. S., and Campbell G.M. “Discrete particle motion on sieves - a numerical study using the DEM simulation,” Powder Technology, 113, pp.190-202, 2003.
22. Haishen J., Yuemin Z., Chenlong D., Chusheng L., Jida W., Hairui D., Peng L., and Jinpeng Q. “Dynamic characteristics of an equal-thickness screen with a variable amplitude and screening analysis “, Powder Technology, 311, pp.239–246, 2017.
23. Elskamp. F. and Harald K. “Review and benchmarking of process models for batch screening based on discrete element simulations,” Advanced Powder Technology, 26, pp.679-697, 2015.
24. Wang X. and Si H., “Conveying characteristics of dual pneumatic feeder used for biomass pyrolysis,” BioResources, 12, pp.5970-5983, 2017.
指導教授 蕭述三(Hsiau, Shu-San) 審核日期 2019-8-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明