博碩士論文 106323050 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:53 、訪客IP:3.135.202.182
姓名 翁莉芳(Li-Fang Weng)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 均勻流場受力優化矩形質子交換膜燃料電池
(Uniform flow field force Optimized rectangular Polymer electrolyte membrane fuel cell)
相關論文
★ 熱塑性聚胺酯複合材料製備燃料電池 雙極板之研究★ 以穿刺實驗探討鋰電池安全性之研究
★ 金屬多孔材應用於質子交換膜燃料電池內流道的研究★ 不同表面處理之金屬發泡材於質子交換膜燃料電池內的研究
★ PEMFC電極及觸媒層之電熱流傳輸現象探討★ 熱輻射對多孔性介質爐中氫、甲烷燃燒之影響
★ 高溫衝擊流熱傳特性之研究★ 輻射傳遞對磁流體自然對流影響之研究
★ 小型燃料電池流道設計與性能分析★ 雙重溫度與濃度梯度下多孔性介質中磁流體之雙擴散對流現象
★ 氣體擴散層與微孔層對於燃料電池之影響與分析★ 應用於PEMFC陰極氧還原反應之Pt-Cu雙元觸媒製備及特性分析
★ 加熱對肌肉組織之近紅外光光學特性影響之研究★ 超音速高溫衝擊流之暫態分析
★ 質子交換膜燃料電池陰極端之兩相流模擬與研究★ 矽相關半導體材料光學模式之實驗量測儀器發展
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-8-19以後開放)
摘要(中) 本研究於原實驗室設計之金屬多孔材流道上,設計矩形流道之質子交換膜燃料電池,進而增加燃料電池反應面積,可大幅減少同瓦數電堆/單電池之重量與體積,提升電堆重量及體積功率密度。本研究使用組裝平台並於電池組裝時中心施予一正向力,增加電池受力均勻性,改善電池流場狀況,進而提升電池性能,並利用介面壓力驗證電池內部受壓之均勻性,使用各項流場分析技術(如:壓力降、氣體利用率等)及表面結構分析,探討內部流阻對電池性能之影響,最後進行性能測試,驗證不同正向力下之電池性能。
研究結果顯示,當使用矩形流道,使反應面積提升至原方形設計的3倍,重量卻只有原方形設計的1.8倍,提升電池重量功率密度,且使用組裝平台並施予正向力之電池,電池內部中心受壓較均勻,使氣體擴散層及流道接觸更加均勻化。而在流道內部分析中,使用組裝平台並施予200 kgf之電池,於當量比測試中,空氣當量比由3降至2時,無使用組裝平台之電池,0.6 V下之電流密度下降幅度為26 %,使用組裝平台並施予200 kgf之電池,0.6 V下之電流密度下降幅度為10 %,且氣體利用率高達62.9 %。使用組裝平台並施予200 kgf之電池性能於0.6 V下之電流密度可高達1200 mA/cm2,證實此為一成功且實用之設計。
摘要(英) In this research, the assembly platform was used for fuel cell assembly. Since the area of the fuel cell is rectangle, a normal force was applied to the center of the fuel cell to distribute the force uniformly, which was verified by checking the interface pressure. Flow field analysis techniques (such as pressure drop, gas utilization, etc.) and surface structure analysis were used to determine the effect of resistance to the cell performance. And performance testing was used to verify fuel cell performance under different forward forces. The results show that when using a rectangular flow channel and the reaction area was increased by three-fold. However the weight of cell only becomes 1.8 times that of the original square design. This greatly increases the weight power density of the fuel cell. The fuel cell which assembling with proper normal force can uniformly make the gas diffusion layer and the flow path in better contact with each other. In the flow field analysis, the assembly platform was used and a fuel cell of 200 kgf was applied. In the stoichiometry test, when the air stoichiometry was reduced from 3 to 2 and the assembly platform was not used, the current density at 0.6 V decreased 26%. However, fuel cell using an assembly platform and applying a 200 kgf normal force, the current density at 0.6 V only reduces 10%. Moreover the gas utilization is as high as 62.9%. The use of an assembly platform and a 200 kgf force achieves a fuel cell performance that reach up to 1200 mA/cm2 at 0.6 V, which confirms that the new design is successful and practical.
關鍵字(中) ★ 質子交換膜燃料電池
★ 金屬多孔材
★ 流場設計
★ 矩形流道
關鍵字(英)
論文目次 目錄
中文摘要 i
英文摘要 ii
致謝 iv
目錄 v
圖目錄 viii
表目錄 xi
第一章 緒論 1
1-1前言 1
1-2質子交換膜燃料電池 5
1-2.1燃料電池之種類 5
1-2.2質子交換膜燃料電池工作原理 8
1-2.3質子交換膜燃料電池之組成結構 10
1-2.4質子交換膜燃料電池之極化現象 14
1-3電化學交流阻抗基本原理 16
1-4研究動機與方向 19
第二章 文獻回顧 20
2-1質子交換膜燃料電池 20
2-2金屬多孔材之研究與應用 21
2-3組裝受力對電池之影響 22
2-4壓降分析 23
2-5電化學交流阻抗分析 24
第三章 實驗方法與實驗設備 28
3-1實驗架構與流程 28
3-2界面壓力量測 29
3-3截面結構分析 30
3-3.1掃描式電子顯微鏡 30
3-4壓降量測 31
3-5燃料電池各部元件 32
3-5.1膜電極組 32
3-5.2矽橡膠氣密墊片 34
3-5.3鎳金屬多孔材 34
3-5.4金屬雙極板與流道 35
3-5.5端板 35
3-6燃料電池測試系統 36
3-7電化學交流阻抗分析儀 40
第四章 結果與討論 44
4-1組裝平台設計理念 44
4-2組裝平台對電池性能之影響 46
4-3組裝平台對流場壓降之影響 56
4-4金屬多孔材特性分析 58
4-5組裝平台對電池氣體利用率之影響 59
4-6組裝平台前後化學當量比對電池的影響 61
第五章 結論與未來規劃 65
5-1結論 65
5-2未來規劃 66
第六章 參考文獻 67
參考文獻 [1] http://www.ema.org.tw/monthlymgz/pdf/41/78-85.pdf
[2] R. Suwanwarangkul, E. Croiset, M. W. Fowler, P. L. Douglas, E. Entchev, and M. a. Douglas, “Performance comparison of Fick’s, dusty-gas and Stefan-Maxwell models to predict the concentration overpotential of a SOFC anode,” J. Power Sources, vol. 122, no. 1, pp. 9-18, 2003.
[3] M. M. Hussain, X. Li, and I. Dincer, “Mathematical modeling of planar solid oxide fuel cells,” J. Power Sources, vol. 161, no. 2, pp. 1012-1022, 2006.
[4] H. W. Chang, C. M. Huang, and S. S. Shy, “An experimental investigation of pressurized planar solid oxide fuel cells using two different flow distributors,” J. Power Sources, vol. 250, pp. 21-29, 2014.
[5] D. J. L. Brett, A. Atkinson, N. P. Brandon, and S. J. Skinner, “Intermediate temperature solid oxide fuel cells,” Chem. Soc. Rev., vol. 37, no. 8, pp. 1568-1578, 2008.
[6] A. Demin, “Thermodynamic analysis of a hydrogen fed solid oxide fuel cell based on a proton conductor,” Int. J. Hydrogen Energy, vol. 26, no. 10, pp. 1103-1108, 2001.
[7] A. K. Demin, P. E. Tsiakaras, V. a. Sobyanin, and S. Y. Hramova, “Thermodynamic analysis of a methane fed SOFC system based on a protonic conductr,” Solid State Ionics, vol. 152-153, pp. 555-560, 2002.
[8] M. Ni, M. K. H. Leung, and D. Y. C. Leung, “Mathematical modelling of proton-conducting solid oxide fuel cells and comparison with oxygen-ion-conducting counterpart,” Fuel Cells, vol. 7, no. 4, pp. 269-278, 2007.
[9] S. M. Lu, “A review of high-efficiency motors: Specification, policy, and technology” , Renew and Sustainable Energy Reviews, vol. 59, pp. 1-12, 2016.
[10] A. Alaswad, A. Baroutaji, H. Achour, J. Carton, A. A. Makky, A.G. Olabi, “Developments in fuel cell technologies in the transport sector”, Hydrogen Energy, Unpoblished.
[11] C. Y. Liu, C. C. Sung,“A review of the performance and analysis of proton exchange membrane electrode assembles,” Journal of Power Sources, Vol. 220, pp. 348-353, 2012
[12] W. Mitchell Jr., “Fuel Cells a Series of Monographs,”Academic Press., New York, 1963
[13] Kumar, R. G. Reddy, “Polymer Electrolyte Membrane Fuel Cell with Metal Foam in the Gas Flow-Field of Bipolar/End Plates,” Journal of New Materials for Electrochemical Systems,Vol 6, pp. 231-236, 2003
[14] http://www.naipo.com/Portals/1/web_tw/Knowledge_Center/Industry_Economy/publish-272.htm
[15] Johnson Matthey PLC, “The fuel cell today industry review 2011 technical report”, Fuel Cell Today, 2011.
[16] 蔡秉蒼,「應用金屬多孔材為流道之質子交換膜燃料電池之研究」,國立中央大學能源工程研究所博士論文, 2012.
[17] K. Kordesch, G. Simader, “Fuel cells and their applications”, VCH Weinheim, 1996.
[18] J. J. Sumner, S. E. Creagert, J. J. Ma and D. D. DesMarteau, “Proton conductivity in Nafion® 117 and in a novel bis[(perfluoroalkyl)sulfonyl]-imide ionomer membrane”, J. Electrochem. Soc., vol. 145, No. 1, 1998.
[19] X. Ch eng, Z. Shi, N. Glass, L. Zhang, J. Zhanga, D. Song, Z.S. Liu, H. Wang, J. Shen, “A review of PEM hydrogen fuel cell contamination: impacts, mechanisms, and mitigation” , J. Power Sources, vol. 165, no. 2, pp. 739-756, 2007.
[20] V. R. Antunes, M.C.L. Oliveira, G. Ett, V. Ett, “Corrosion of metal bipolar plates for PEM fuel cells: A review” , International Journal of Hydrogen Energy, vol. 35, pp. 3632-3647, 2010.
[21] 黃鎮江,「燃料電池」,全華科技圖書股份有限公司, 2005.
[22] E. Barsoukov, J. R. Macdonald (2nd Eds), “Impedance spectroscopy: theory, experiment, and application”, John Wiley&Sons, Inc., 2005.
[23] O.J. Murphy, A. Cisar, E. Clarke, “Low-cost light weight high power density PEM fuel cell stack”, Elsevier Science, Vol. 43, pp. 3829-3840, 1998.
[24] J.L. Jespersen, E. Schaltzb, S.K. Kærb, “Electrochemical characterization of a polybenzimidazole-based high temperature proton exchange membrane unit cell”, Journal Power Sources, Vol. 191, pp. 289-296, 2009.
[25] D. Chu, R. Jiang, “Comparative studies of polymer electrolyte membrane fuel cell stack and single cell” , Journal of Power Source, Vol. 80, pp. 226-234, 1999.
[26] P. Rodatz, F. Büchi, C. Onder, L. Guzzella, “Operational aspects of a large PEFC stack under practical conditions”, Journal of Power Sources, Vol. 128, pp. 208-217, 2004.
[27] W. Schmittinger, A. Vahidi, “A review of the main parameters influencing long-term performance and durability of PEM fuel cells”, Journal of Power Sources, Vol. 180, pp. 1-14, 2008.
[28] J.J. Hwang, G.J. Hwang, R.H. Yeh, C.H. Chao, “Measurement of interstitial convective heat transfer and frictional drag for flow across metal foams”, Journal Heat Transfer, Vol. 124, pp. 120-129, 2002.
[29] M. Medraj, E. Baril, V. Loya, L.P. Lefebvre, “The effect of microstructure on the permeability of metallic foams”, Journal of Material Science, Vol. 42, pp. 4372-4383, 2007.
[30] C.J. Tseng, B.T. Tsai, Z.S. Liu, T.C. Cheng, W.C. Chang and S.K. Lo, “A PEM fuel cell with metal foam as flow distributor”, Energy Conversion and Management, Vol. 62, pp. 14-21, 2012.
[31] B.T. Tsai, C.J. Tseng, Z.S. Liu, C.H. Wang, C.I. Lee, C.C. Yang and S.K. Lo, “Effects of flow field design on the performance of a PEM fuel cell with metal foam as the flow distributor”, International Journal of Hydrogen Energy, Vol. 37, pp. I3060-I3066, 2012.
[32] C.Y. Wen, Y.S. Lin, C.H. Lu, “Experimental study of clamping effects on the performances of a single proton exchange membrane fuel cell and a 10-cell stack”, Journal of Power Sources, Vol. 192, pp. 475-485, 2009.
[33] S. Asghari, M.H. Shahsamandi, M.R.A. Khorasani, “Design and manufacturing of end plates of a 5 kW PEM fuel cell”, International Journal of Hydrogen Energy, Vol. 35, pp. 9291-9297, 2010.
[34] E. Alizadeh, M.M. Barzegari, M. Momenifar, M. Ghadimi, S.H.M. Saadat, “Investigation of contact pressure distribution over the active area of PEM fuel cell stack”, International Journal of Hydrogen Energy, Vol. 41, pp. 3062-3071, 2016.
[35] X. Liu, H. Guo, F. Ye, C.F. Ma, “Water flooding and pressure drop characteristics in flow channels of proton exchange membrane fuel cells”, Electrochimica Acta, Vol. 52, pp. 3607-3614, 2007.
[36] K. Jiao, J. Park, X. Li, “Experimental investigations on liquid water removal from the gas diffusion layer by reactant flow in a PEM fuel cell”, Applied Energy, Vol. 87, pp. 2770-2777, 2010.
[37] V.A. Paganin, C.L.F. Oliveira, E.A. Ticianelli, T.E. Springer, E.R. Gonzalez, “Modelisticinterpretation of the impedance response of a polymer electrolyte fuel cell1”, Electrochimica Acta, Vol. 43, pp. 3761-3766, 1998.
[38] M. Eikerling, A.A. Kornyshev, “Electrochemical impedance of the cathode catalyst layer in polymer electrolyte fuel cells”, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 475, pp. 107-123, 1999.
[39] T.J.P. Freire, E.R. Gonzalez, “Effect of membrane characteristics and humidification conditions on the impedance response of polymer electrolyte fuel cells”, Journal of Electroanalytical Chemistry, Vol. 503, pp. 57-68, 2001.
[40] X. Yuan, J.C. Sun, M. Blanco, H. Wang, J. Zhang, D.P. Wilkinson, “AC impedance diagnosis of a 500W PEM fuel cell stack Part I:Stack impedance”, Journal of Power Sources, Vol.161, pp. 908-928, 2006.
[41] X. Yuan, J.C. Sun, M. Blanco, H. Wang, J. Zhang, D.P. Wilkinson, “AC impedance diagnosis of a 500W PEM fuel cell stack Part II:Individual cell impedance”, Journal of Power Sources, Vol.161, pp. 929-937, 2006.
[42] X. Yan, M. Hou, L. Sun, D. Liang, Q. Shen, H. Xu, P. Ming, B. Yi, “AC impedance characteristics of a 2kW PEM fuel cell stack under different operating conditions and load changes”, International Journal of Hydrogen, Vol.32, pp. 4358-4364, 2007.
[43] R. Chen, Y. Qin, Q. Du, J Peng, “Effects of Clamping Force on the Operating Behavior of PEM Fuel Cell” , SAE International by University of British Columbia, Monday, September 24, 2018.
指導教授 曾重仁(Chung-Jen Tseng) 審核日期 2019-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明