博碩士論文 106323094 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:3.145.56.59
姓名 Guan-Xun(Wu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 以電鍍法製備鈷鐵鎳合金三維微結構及其特性之研究
(Fabrication of Three-Dimensional Co-Fe-Ni Alloying Micro-Features by Electroplating and their Characterization)
相關論文
★ 銅導線上鍍鎳或錫對遷移性之影響及鍍金之鎳/銅銲墊與Sn-3.5Ag BGA銲料迴銲之金脆研究★ 單軸步進運動陽極在瓦茲鍍浴中進行微電析鎳過程之監測與解析
★ 光電化學蝕刻n-型(100)單晶矽獲得矩陣排列之巨孔洞研究★ 銅箔基板在H2O2/H2SO4溶液中之微蝕行為
★ 助銲劑對迴銲後Sn-3Ag-0.5Cu電化學遷移之影響★ 塗佈奈米銀p型矽(100)在NH4F/H2O2 水溶液中之電化學蝕刻行為
★ 高效能Ni80Fe15Mo5電磁式微致動器之設計與製作★ 銅導線上鍍金或鎳/金對遷移性之影響及鍍金層對Sn-0.7Cu與In-48Sn BGA銲料迴銲後之接點強度影響
★ 含氮、硫雜環有機物對鍋爐鹼洗之腐蝕抑制行為研究★ 銦、錫金屬、合金與其氧化物的陽極拋光行為探討
★ n-型(100)矽單晶巨孔洞之電化學研究★ 鋁在酸性溶液中孔蝕行為研究
★ 微陽極引導電鍍與監測★ 鍍金層對Bi-43Sn與Sn-9Zn BGA銲料迴銲後之接點強度影響及二元銲錫在不同溶液之電解質遷移行為
★ 人體血清白蛋白構形改變之電化學及表面電漿共振分析研究★ 光電化學蝕刻製作n-型(100)矽質微米巨孔 陣列及連續壁結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究以微陽極導引電鍍法製作鈷鐵鎳合金三維結構物。在電鍍製程中,改變的實驗參數為鍍液中硫酸鈷濃度(0.04 M ~ 0.10 M),硫酸鎳濃度(0.30 M ~ 0.60 M)以及pH值(2.3~4.3)等條件。先利用電鍍三元合金微柱來找出最佳的析鍍參數,最後進行微螺旋的電鍍實驗。而利用改變參數來探討析鍍出鈷鐵鎳合金微柱的表面形貌,機械性質,耐蝕性以及磁特性之影響。而利用場發式電子顯微鏡來進行表面形貌之觀測;利用奈米壓痕儀器量測鈷鐵鎳合金微柱之楊氏模數與硬度;耐蝕性則是將微柱浸泡在3.5 wt.% NaCl水溶液中,利用恆電位儀進行電化學試驗比較其腐蝕行為。
而結果顯示,當固定鍍液中硫酸鈷濃度0.10M,硫酸鎳濃度0.304M,pH=3.3時,能夠得到最佳磁特性1.9 T及極佳之硬度6.46 GPa ,其線性阻抗值與腐蝕電流性能為386 Ohm、3.07×10-5 A/cm2 ,且將pH上升至3.3時,能夠有效地增加析度速率,故較適合為螺旋之析鍍參數。
析鍍微螺旋時,實驗參數有製程參數(重複次數2、3、4)以及改變析度角度(30∘、50∘),而利用場發式電子顯微鏡來進行表面形貌之觀測並探討微螺旋之螺距與螺旋長度變化。可以發現當析度角度越大時,螺旋之螺距的增加量會明顯下降,且微螺旋之長度會因為製程參數之增加而隨之上升。
關鍵字: 微陽極導引電鍍,鈷鐵鎳合金,磁特性。
摘要(英) In this study, the cobalt-iron-nickel (CoFeNi) ternary alloy was fabricated by microanode guided electroplating (MAGE). In the electroplating, the experimental parameters of cobalt sulfate concentration (0.040 ~ 0.100 M), nickel sulfate concentration (0.30 ~ 0.60 M), and pH value (2.3 ~ 4.3) have been studied. The optimum parameter of applied voltage, the gap between microanode and cathode, the concentration of metal ions, and pH value of bath had been investigated, and then the optimal parameters were applied for producing 3D micro-helical alloy.
The surface morphology, mechanical properties, corrosion resistance, and magnetic properties of the CoFeNi ternary alloy microcolumns were analyzed by the FE-SEM, Nano-indentor, potentiostat, and vibrating sample magnetometer (VSM).
The results showed that the lowest saturation induction intensity reached 1.9 T and the outstanding hardness was 6.46 GPa as the concentration of cobalt sulfate at 0.10 M, nickel sulfate at 0.30 M, and the pH at 3.3. The corrosion resistance is 386 Ohm, and the corrosion current density was 30.7 μA/cm2. When the pH at 3.3, the electroplating rate was increased obviously. Therefore, this condition is more suitable for plating the CoFeNi micro-helical structure.
When electroplating a micro-helical, the experimental parameters are process parameters (repetition times 2, 3, 4) and changing the angle of resolution (30, 50 ). The FE-SEM was used to observe the surface morphology and the length of the microhelices. The results showed that when the electroplating angle was increased, the increment of the pitch of the helix will decrease. In addition, the length of the microhelix will increase due to the increase of the repetition time.
Keywords: Microanode guided electroplating, Cobalt-iron-Nickel alloy, magnetic property.
關鍵字(中) ★ 微陽極導引電鍍
★ 鈷鐵鎳合金
★ 磁特性
關鍵字(英) ★ Microanode guided electroplating
★ Cobalt-iron-Nickel alloy
★ magnetic property
論文目次 摘要 i
Abstract i
致謝 ii
目錄 iv
表目錄 viii
圖目錄 ix
第一章、前言 1
1.1 研究背景 1
1.2 研究動機 2
第二章、文獻回顧與基礎原理 3
2.1 國外微電鍍製程之發展 3
2.2 國內微電鍍製程之發展 5
2.3 電鍍原理 6
2.4 合金電鍍 7
2.5 奈米壓痕測試材料之硬度與楊氏模數 9
2.6 材料的磁特性 10
2.6.1 鈷鐵鎳三元合金磁性的起因 10
2.6.2 鐵磁性材料之磁區結構 11
2.6.3 磁性材料的評估依據 12
第三章、實驗方法 14
3.1 實驗流程 14
3.2 實驗儀器 14
3.2.1 實驗設備 14
3.3 陰陽極製備 16
3.4 鍍浴組成 16
3.5 微陽極導引電鍍法 17
3.5.1 單軸式 17
3.5.2 四軸式 17
3.6 實驗步驟 18
3.6.1 鈷鐵鎳三元合金微柱的表面形貌觀察與組成分析 18
3.6.2 陰極極化曲線量測 19
3.6.3 Comsol電場模擬方式與設定 19
3.6.3.1 微柱之電場模擬 19
3.6.3.2 微螺旋之電場模擬 20
3.6.4 晶體結構分析 20
3.6.5 抗蝕性能量測 20
3.6.6 奈米壓痕試驗 21
3.6.7 磁特性分析 21
第四章、結果 23
4.1 SEM表面形貌之結果 23
4.1.1 析鍍鈷鐵鎳合金微柱 23
4.1.2析鍍鈷鐵鎳合金微螺旋 24
4.2 改變鍍液參數對成分組成之結果 26
4.2.1 改變硫酸鈷濃度 26
4.2.2 改變硫酸鎳濃度 27
4.2.3 改變鍍液pH值 27
4.3 COMSOL模擬軟體結果 28
4.3.1 析鍍微柱 28
4.3.2 析鍍微螺旋 29
4.4 平均電流與析度速率 30
4.4.1 改變硫酸鈷濃度 30
4.4.2 改變硫酸鎳濃度 31
4.4.3 改變鍍液pH值 31
4.5 極化曲線量測 31
4.6 X光繞射分析 32
4.6.1 改變硫酸鈷濃度 32
4.6.2 改變硫酸鎳濃度 32
4.6.3 改變鍍液pH值 32
4.7 奈米壓痕量測 33
4.7.1 改變硫酸鈷濃度 33
4.7.2 改變硫酸鎳濃度 33
4.7.3 改變鍍液pH值 34
4.8 磁特性分析 34
4.8.1 改變硫酸鈷濃度 34
4.8.2 改變硫酸鎳濃度 35
4.8.3 改變鍍液pH值 35
4.9 電化學分析 36
4.9.1 線性極化量測 36
4.9.2 塔弗極化量測 36
第五章、討論 38
5.1 微柱製程參數之影響 38
5.1.1 鍍液參數對微柱組成之討論 38
5.1.2 極化曲線之討論 39
5.1.3 抗蝕性能之討論 39
5.1.4 機械性質之討論 40
5.1.5 磁特性之討論 40
5.2 鈷鐵鎳三元合金微螺旋製程參數之影響 41
第六章、結論與未來展望 43
參考文獻 45


參考文獻 [1] R. Bruck, , K. Hahn, and J. Stienecker, “Technology description methods for LIGA processes.” Journal of Micromechanics and Microengineering, 5(2), 1995, p. 196.
[2] M. Abraham, , “Laser LIGA: a cost-saving process for flexible production of microstructures.” 1995.
[3] X. Li, “Fabrication and characterization of porous Ti6Al4V parts for
biomedical applications using electron beam melting process.” Materials Letters, 63(3-4), 2009, p. 403-405.
[4] L.S. Bertol, “Medical design: direct metal laser sintering of Ti–6Al–4V.”
Materials & Design, 31(8), 2010, p. 3982-3988.
[5] Madden, J.D. and I.W. Hunter, “Three-dimensional microfabrication by localized electrochemical deposition.” Journal of microelectromechanical systems, 5(1), 1996, p. 24-32.
[6] E. El-Giar and D. Thomson, “Localized electrochemical plating of interconnectors for microelectronics.” in WESCANEX 97: Communications, Power and Computing. Conference Proceedings., IEEE. 1997.
[7] S. Yeo, J. Choo, and K. Sim, “On the effects of ultrasonic vibrations on localized electrochemical deposition.” Journal of micromechanics and microengineering. 12(3):, 2002, p. 271.
[8] S. Seol, “Coherent microradiology directly observes a critical cathode-anode distance effect in localized electrochemical deposition.” electrochemical and solid-state letters, 7(9), 2004, p. C95-C97.
[9] S.K. Seol, “Localized Electrochemical Deposition of Copper Monitored
Using Real‐Time X‐ray Microradiography.” Advanced Functional
Materials, 15(6), 2005, p. 934-937.
[10] S.K. Seol, “Fabrication of freestanding metallic micro hollow tubes by
template-free localized electrochemical deposition.” Electrochemical
and solid-state letters, 10(5), 2007, p. C44-C46
[11] C. Lin, “Improved copper microcolumn fabricated by localized electrochemical deposition.” Electrochemical and Solid-State Letters, 8(9), 2005, p. C125-C129.
[12] C.-Y. Lee, C.-S. Lin, and B.-R. Lin, “Localized electrochemical deposition process improvement by using different anodes and deposition directions.” , Journal of Micromechanics and Microengineering, 18(10), 2008, p. 105008.
[13] F. Wang and H. He, “Parametric electrochemical deposition of controllable
morphology of copper micro-columns.” Journal of The Electrochemical
Society, 163(10), 2016, p. E322-E327.
[14] F. Wang, H. Xiao, and H. He, “Effects of applied potential and the initial
gap between electrodes on localized electrochemical deposition of
micrometer copper columns.” Scientific reports, 6, 2016, p. 26270.
[15] 張庭綱,微陽極導引電鍍法製作銅微柱及銅柵欄之研究,國立中央大學,碩士論文,2004年。.
[16] 陳譽升,鎳微柱電鍍受鍍浴黏度與電阻率之影響,國立中央大學,碩士論文,2011年。.
[17] 游睿為,單軸步進運動陽極在瓦茲鍍浴中進行微電析鎳過程之監測與解析,國立中央大學,碩士論文,2001年。
[18] 葉柏青,微陽極導引電鍍與監測,國立中央大學,碩士論文,2003年。
[19] 賴格源,微陽極導引電鍍銅其組織及覆蓋範圍之探討,國立中央大學,碩士論文,2006年。
[20] J. Lin, Fabrication of micrometer Ni columns by continuous and
intermittent microanode guided electroplating. Journal of
Micromechanics and Microengineering. 15(12), 2005, p. 2405.
[21] J. Lin, “Fabrication of a micrometer Ni–Cu alloy column coupled with a Cu micro-column for thermal measurement.” Journal of Micromechanics and Microengineering. 19(1), 2008, p. 015030.
[22] T. Chang, “Surface and transverse morphology of micrometer nickel
columns fabricated by localized electrochemical deposition.” Journal of Micromechanics and Microengineering. 17(11), 2007, p. 2336.
[23] 鄭家宏,以微陽極導引電鍍法製作鎳銅合金銅微柱,國立中央大學, 碩士論文,2005年。
[24] 楊仁泓,微陽極導引電鍍法製備微析物之局部電場強度分析,國立中央大學,博士論文,2009年。
[25] Y.-J. Ciou, Y.-R. Hwang, and J.-C. Lin, “Fabrication of two-dimensional microstructures by using micro-anode-guided electroplating with real-time image processing.” ECS Journal of Solid State Science and Technology, 3(7), 2014, p. 268-271.
[26] 顧乃華,以微陽極導引電鍍法製備銅螺旋微米結構與其機械性質分
析,國立中央大學,碩士論文,2005年。
[27] 李昱,以微電鍍法製備鎳鐵合金三維微結構之研究,國立中央大學,
碩士論文,2005年。
[28] M. Ramasubramanian, “Anomalous Codeposition of Fe‐Ni Brenner, A.”,
Electrodeposition of alloys: principles and practice., 2013.
[29] H. Dahms and I. Croll, “The anomalous codeposition of iron‐nickel alloys.”
Journal of the Electrochemical Society. 112(8, 1965), p. 771-775.
[30] W.C. Grande and J.B. Talbot, “Electrodeposition of Thin Films of Nickel‐
Iron I. Experimental.” Journal of the Electrochemical Society. 140(3),
1993 , p. 669-674.
[31] Harris, T.M. and J.S. Clair, “Testing the Role of Metal Hydrolysis in the Anomalous Electrodeposition of Ni‐Fe Alloys.” Journal of the Electrochemical Society. 143(12) , 1996, p. 3918-3922.
[32] Krause, T., L. Arulnayagam, and M. Pritzker, “Model for Nickel‐Iron
Alloy Electrodeposition on a Rotating Disk Electrode.” Journal of the
Electrochemical Society. 144(3), 1997, p. 960-969.
[33] 張瑞慶,奈米壓痕技術與應用,聖約翰科技大學。
[34] Yufang Yang, “Preparation of Fe-Co-Ni Ternary Alloys with Electrodepositio.n”, Int. J. Electrochem. Sci., 2015, p. 5164 – 5175.
[35] L. Péter, A. Csik, K. Vad, E. Tóth-Kádár, Á. Pekker and G. Molnár, “On the composition depth profile of electrodeposited Fe–Co–Ni alloys.” Electrochimica Acta, 55(16), 2010, p. 4734-4741.
[36] Ismail Hanafi, Abdul Razak Daud and Shahidan Radiman, “Potentiostatic
Electrodeposition of Co-Ni-Fe Alloy Particles Thin Film in a Sulfate
Medium.”, Portugaliae Electrochimica Acta 35(1), 2017, p. 1-12.
[37] M. Ebadi, W. J. Basirun, Y. Alias, M. R. Mahmoudian, S. Y. Leng,
“Investigation of electrodeposition of Ni–Co–Fe–Zn alloys in DMSO
with MHD effect.” Materials Characterization 66, 2012, p. 46-55.
[38] E. I. Cooper, C. Bonhôte, J. Heidmann,Y. Hsu, P. Kern, J. W. Lam and H. Xu, “Recent developments in high-moment electroplated materials for recording heads.” IBM Journal of Research and Development, 49(1), 2005, p. 103-126.
[39] M. Saito, N. Ishiwata and K. Ohashi, “Evaluation of the Crystal Structure, Film Properties, and Bs of Electroplated CoNiFe Films.” Journal of the Electrochemical Society, 149(12), 2002, C642-C647.
指導教授 林景崎(Jing-Chie Lin) 審核日期 2019-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明