以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:32 、訪客IP:52.14.223.136
姓名 蔡聿凱(Yu-Kai Tsai) 查詢紙本館藏 畢業系所 機械工程學系 論文名稱 利用光學元件實現陣列型結構光之研究 相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] 至系統瀏覽論文 ( 永不開放) 摘要(中) 本論文利用兩種方式設計光學元件,使高準直光源經由此光學元件轉變為點陣圖之特殊結構,期望應用於3D掃描辨識系統,以達到結構光技術之高精度及快速掃描之特點。本研究中使用632nm的準直光源作設計,計畫在距離50公分處打出60*60cm的結構點陣圖,結構設計為100*100的矩形點陣,點與點之間的距離為0.6mm。
設計方式分為兩種,第一種設計方式是採用迭代傅立葉演算法計算出原始光場與最終結果中間的相位繞射光學元件,進行約300次的迭代逼近收斂,接著將此繞射光學元件進行八階量化,設計結果為繞射效率達77%,信躁比(SNR)為27.8dB,繞射圖形與目標圖形相符,在繞射區域內有100*100個點數。
第二種方式是採用微透鏡陣列設計,準直光源經過此微透鏡陣列時,會被對應之微透鏡聚焦,在焦平面處形成數個微小光斑,這些光斑再進行干涉與繞射,並在遠場產生期望之矩形點陣。微透鏡之週期影響結構光之密度,焦平面光斑大小影響屏幕成像面大小。設計結果為目標區域能量占總共93%,其餘能量損失於周圍較不清楚的點陣。
本研究建立了兩種方法設計光學元件用來產生結構點陣光,可因應不同需求做選擇設計。繞射光學元件的設計自由度高,除了本研究中的矩形點陣,也可以設計特殊織結構光。微透鏡陣列設計快速,不須經由複雜的傅立葉運算,可快速得知設計需求,並且相對容易製造。
摘要(英) In this thesis, we used two methods to design optical components. Converting a high-collimation light source into a special structured light of a dot array through the optical element. To achieve the high precision of structured light technology and the characteristics of fast scanning. In this study, using 632 nm collimated light source for design. Planning to produce a 60*60cm structure dot pattern at a distance of 50 cm. The structure was designed as a 100*100 rectangular dot matrix with a distance of 0.6 mm between each point.
Design method is divided into two, the first design approach is to use an Iterative Fourier transform algorithm to calculate the phase diffraction optical element between the original light field and the final result. An iterative approximation convergence of about 300 is performed. Then quantizing the diffractive optical element. The design result is a diffraction efficiency of 77% and a signal-to-noise ratio of 27.8dB. The diffraction pattern matches the target pattern and has 100*100 points in the diffraction area.
The second way is to use a microlens array. When the collimated light source passes through the lens array, it will be focused by the corresponding lens. These spots produced at the focal plane conduct Interference and diffraction, and produce the dot array in the far field. The period of the microlens affects the density of the structured light, and the focal plane spot size affects the screen image size. The design result is that the target area energy accounts for 93% of the total, and the rest of the energy is lost to the surrounding unclear lattice.
This study established two methods to design optical components to generate structural light, which can be selected according to different needs. The design freedom of the diffractive optical element is high, and in addition to the rectangular lattice in this study, special woven structure light can also be designed. The microlens array is designed to be fast, without the need for complex Fourier operations, to quickly understand design requirements and is relatively easy to manufacture.
關鍵字(中) ★ 繞射光學元件
★ 微透鏡陣列
★ 結構光關鍵字(英) ★ Diffractive Optical Element(DOE)
★ Microlens array
★ Structured light論文目次 摘要 I
ABSTRACT II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 VIII
第一章、 緒論 1
1 -1研究背景 1
1-2研究動機與目的 3
1-3文獻回顧 5
1-4 論文架構 7
第二章、 繞射光學理論 9
2-1 前言 9
2-2 純量繞射理論 10
2-2-1 Fresnel繞射理論[8] 10
2-2-2 Fraunhofer繞射理論[8] 11
2-3 繞射元件設計之方法 12
2-3-1 迭代法原理(The Gerchberg-Saxton algorithm, GS)[9, 10] 12
2-3-2 直接二分搜尋法(Direct Binary Search, DBS)[11, 12] 12
2-3-3模擬退火法(The Simulated Annealing algorithm, SA)[13-15] 13
2-3-4基因演算法(Genetic Optimization Algorithms, GA) [16] 15
第三章、 繞射光學元件 16
3-1 傅立葉迭代演算法(IFTA) 16
3-2 相位量化 19
3-3 入射光源與DOE之關係 22
第四章、 微透鏡陣列 26
4-1 微透鏡參數 26
4-2 微透鏡之聚焦 27
4-3 遠場的成像 31
4-4 微透鏡陣列的優點與缺點 35
第五章、 分析與討論 37
5-1 目標訂定 37
5-2 設計過程與結果 38
5-2-1 繞射元件設計 38
5-2-2 微透鏡陣列設計 40
第六章、 結論與未來展望 44
參考文獻 46參考文獻 [1] B. Curless, “From Range Scans to 3D Models,” Computer Graphics, pp.38-41 (1999).
[2] J. Peter, D. Downing, “Diffractive optical element and method for the design of a diffractive optical element,” U.S. Patent No. 20170082862 (2015).
[3] R. Akerman, D. Voschina, N. Galezer, Y. Arieli, T. Segev, Z. Mor, A. Shpunt. “Optical projector with beam monitor including sensing intensity of beam pattern not projected toward an object,” U.S. Patent No. 8829406 (2013).
[4] Y. Ogura, J. Tanida, Y. Ichioka, Y. Mokuno, and K. Matsuoka, “Diffractive Phase Element for Reducing a Diameter of Main-lobe of a Focal Spot,” Proc. SPIE, pp. 226-235 (2000).
[5] J. W. Goodman, “Introduction to Fourier optics,” Roberts and Company Publishers (2005).
[6] R.W. Gerchberg and W.O. Saraxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik, pp. 237–246 (1972).
[7] G.Z. Yang, B.Z. Dong, B.Y. Gu, J.Y. Zhuang, and O.K. Ersoy, “Gerchberg–Saxton and Yang–Gu algorithms for phase retrieval in a nonunitary transform system: a comparison,” Applied Optics, pp. 209-218 (1994).
[8] J. Willams, F. Louis. “A modification to the half-interval search (binary search) method,” Proceedings of the 14th ACM Southeast Conference, pp. 95–101 (1975).
[9] B.K. Jennison, J.P. Allebach, and D.W. Sweeney, “Efficient design of direct binary search computer generated holograms,” Opt, pp. 652-660 (1991).
[10] 林正峰, 邱華楠, “設計繞射光學元件之模擬退火法的研究,” 碩士論文 (2010).
[11] J.Y. Lu, Q. Li, Y.H. Dong, H.D. Gao, Z.G. Ma, “Direct Design of Quantized DOEs by Genetic Simulated Annealing Algorithm,” Journal of Optoelectronics, Laser, (2001).
[12] K.H. Hsu, “Study of Simulated Annealing Algorithm for Design of Diffractive Optical Elements,” (2005).
[13] U. Mahlab, J. Shamir, and H.J. Caulfield, “Genetic algorithm for optical pattern recognition,” Opt, pp. 648-650 (1991).
[14] H.F. Shih, “Design and fabrication of diffraction optical elements for stereoscopic measuring system,” pp. 17 (2014).
[15] R. A. R. Tricker, “Introduction to meteorological optics,” American Elsevier Publishing Company (1970).
[16] P. Birch, R. Young, M. Farsari, D. Budgett, J. Richardson, C. Chatwin, “A Comparison of the Iterative Fourier Transform Method and Evolutionary Algorithms for the Design of Diffractive Optical Elements,” Optics and Lasers in engineering, p.3 (2000).
[17] S.M. Lin, S.T. Lai, “Design Of Phase-only Diffractive Optical Elements,” Opt (2000).
[18] Eric Toombs, by en.wikipedia, 25 July (2011).
[19] 許阿娟, 朱嘉雯, 林佳芬, 陳志隆, “光學系統設計進階篇.” 第九章, 高斯光束, 2002。
[20] T.T. Smith, “Spherical Aberration in thin lenses,” Scientific Papers of the Bureau of Standards. 18: 559–584 (1922).
[21] Kullabs, “Spherical Aberration in a Lens and Scattering of Light.”
[22] Karl Dieter Möller, “Optics,” 2nd edition p152-156.
[23] P.H. Nussbaum, R. Volkel, H.P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. (1997).
指導教授 陳奇夆(Chi-Feng Chen) 審核日期 2019-8-22 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare