博碩士論文 106332602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:56 、訪客IP:3.12.164.71
姓名 潘睿鈞(Pan Ruey Jiun)  查詢紙本館藏   畢業系所 應用材料科學國際研究生碩士學位學程
論文名稱 甘胺酸-硝酸燃燒合成法製備固態氧化物燃料電池陰極材料 La0.5 Sr0.5 Co0.2 Fe0.8-X NiX (x from 0 to 0.03)電化學性質之研究
(La0.5 Sr0.5 Co0.2 Fe0.8-X NiX (x from 0 to 0.03) Prepared by Combustion to Use as Cathode Materials of Solid Oxide Fuel Cells)
相關論文
★ 鋁鈧濺鍍薄膜中鈧含量對其微結構、光反射性與腐蝕性質之影響★ 鍍金發泡鎳質子交換膜燃料電池之電池操作溫度、陰極加濕溫度、陰極計量比對其性能影響之研究
★ 1kW質子交換膜商用電堆中四個特徵區段單電池之電化學交流阻抗圖譜診斷★ 碳酸鹽沉澱製備Ba0.5Sr0.5Co0.8Fe0.2O3 及其在滲透銀前後之陰極特性比較
★ 銅導線上鍍鎳或錫對遷移性之影響及鍍金之鎳/銅銲墊與Sn-3.5Ag BGA銲料迴銲之金脆研究★ 單軸步進運動陽極在瓦茲鍍浴中進行微電析鎳過程之監測與解析
★ 光電化學蝕刻n-型(100)單晶矽獲得矩陣排列之巨孔洞研究★ 銅箔基板在H2O2/H2SO4溶液中之微蝕行為
★ 助銲劑對迴銲後Sn-3Ag-0.5Cu電化學遷移之影響★ 塗佈奈米銀p型矽(100)在NH4F/H2O2 水溶液中之電化學蝕刻行為
★ 高效能Ni80Fe15Mo5電磁式微致動器之設計與製作★ 銅導線上鍍金或鎳/金對遷移性之影響及鍍金層對Sn-0.7Cu與In-48Sn BGA銲料迴銲後之接點強度影響
★ 含氮、硫雜環有機物對鍋爐鹼洗之腐蝕抑制行為研究★ 銦、錫金屬、合金與其氧化物的陽極拋光行為探討
★ n-型(100)矽單晶巨孔洞之電化學研究★ 鋁在酸性溶液中孔蝕行為研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在几年前表明,能源消耗已经变得如此实用,但能源资源消耗的代名词因此而异,将导致环境污染,科学家们正在研究能源资源利用的研究方向燃料电池表明SOFC的潜力能够满足现代生活的能量需求。 SOFC燃料电池是高效且环保的,并且操作该电池的燃料源是非常丰富且多样化的燃料源。然而,SOFC的应用具有必须操作的缺点。在高温下,燃料电池中的材料类型具有高生产成本。为了提高燃料电池的性能,本研究采用复合掺杂方法,结合电解质和阴极,为SOFCs制备混合质子,氧离子和电子传导阴极。
钙钛矿La0.5Sr0.5Co0.2Fe0.8O_(3-δ)(LSCF5528)的导电离子电子(MIEC)混合物是中温固体氧化物燃料电池(IT-SOFCs)中极具前景的阴极混合物之一。由于海绵状阴极的性能和耐久性,三维结构非常复杂,因此了解这种材料的结构和特性非常重要,因此在本文中,还考察了一系列浓度以及适用于pH值的水平。燃料来源合成阴极粉末,使其合理且最稳定。
为了增强阴极材料,本研究文章使用在B位掺杂的镍通过掺杂低价来增加阴极材料。除了掺杂低镍价La0.5Sr0.5Co0.2NixFe0.8-x与x Fe中的0.01~0.03(LSCF55N)会降低活化能,这证明材料的反应能力需要较低的能量来处理反应,也可以用镍代替材料中的Fe,可以增加材料中的氧空位增加TPB(三相边界)比发生更快的交换反应产生更多电子更多的功率密度。
本研究中的阴极材料基于两种类型:混合氧化物离子电子导体和质子导体和混合氧化物导体的复合物。此外,该研究还提供了O型和P型SOFC之间关于上述两种类型之间产生的能量的比较。在具有相同类型的阴极的P型和O型之间使用多种类型的电容将导致实施许多步骤,以便理解材料更深的SOFC。此外,研究的目的还在于了解钙钛矿的结构,通过调节pH值为材料创造纯度,燃烧材料的来源是甘氨酸硝酸盐,也控制煅烧温度从800°C-> 1200°变化C形成纯度材料。
该材料的形态和结构采用XRD,SEM器件进行诊断和利用TGA测量孔洞空间,在高温下显示出粉末测量的阴极材料的重量损失,阴极材料也同时测量和导热系数的热膨胀。在研究的后期,还有功率密度和电化学阻抗谱测试。
摘要(英) In a few years ago showed that consumption of energy resources have become so practical in life but synonymous with the consumption of energy resources vary so will lead to environmental pollution, scientists on the way to the research efforts on the use of energy resources the fuel cell shows the potential of SOFC is capable of meeting the energy needs of modern life. SOFC fuel cells are highly efficient and environmentally friendly and the fuel source to operate this battery is very rich and diverse fuel sources. However, the application of SOFC has a disadvantage that must be operated. At high temperatures, the type of material in the fuel cell has a high production cost. In order to improve the performance of fuel cells, in this study, the compound doping method was used, while combining electrolyte and cathode to create a mixed proton, oxygen ion, and electron conducting cathode for SOFCs
The conductive ion-electronic (MIEC) mixture of perovskite La0.5Sr0.5Co0.2Fe0.8O_(3-δ) (LSCF5528) is one of the extremely promising mixtures for cathode at the intermediate temperature solid oxide fuel cells (IT-SOFCs). The three-dimensional structure is so complex that it is important to understand the structure and characteristics of such a material because of the performance and durability of the spongy cathodes so in this paper, a series of concentrations are also examined pH level as well as suitable fuel source to synthesize cathode powder so that it is reasonable and most stable.
To enhance the cathode material this research article uses Nickel doped at B-site to increase the cathode material by doped a low-valence.In addition to doping at a low Nickel valence La0.5Sr0.5Co0.2NixFe0.8-x with x from 0.01 to 0.03 (LSCF55N) in Fe-sited will decrease the activation energy, which proves that the reaction ability of the material requires low energy to handle in reaction, also using Nickel to replace a quantity Fe-sited in the material could be increase the oxygen vacancies in the material increasing TPB (Triple Phase Boundary) more than the exchange reaction that takes place faster to produce more electron more power density.
The cathode material in this study is based on two types: mixed oxide ionic electron conductor and a composited of proton conductor and mixed oxide conductor. In addition, the study also provides a comparison between the O-type and P-type of SOFC about energy generated between the two types above. The use of multiple types of capacitance between the P-type and O-type with the same type of cathode will lead the implementation of many steps compared in order to understand the material the deeper SOFC. In addition, the purpose of the study is also related to understanding the structure of perovskite to create purity for materials through the adjustment of pH and source of combustion materials is glycine nitrate, also control the calcination temperature varying from 800°C-> 1200°C to form a purity materials.
The morphology and structure of the material used XRD, SEM devices to diagnose and using TGA to measure holes space is created at high temperatures showed a weight loss in the powder surveyed cathode materials, cathode materials also simultaneously measured and conductivity coefficient of heat expansion. Later in the study, there are also testing on power density and electrochemical impedance spectroscopy.
關鍵字(中) ★ SOFC
★ 阴极
★ 掺镍
關鍵字(英) ★ SOFC
★ Cathode
★ Doped Nickel
論文目次 Contents
Abstract II
List of Tables X
List of Figures XII
1 Introduction 1
1.1 Fuel Cell Technology 1
1.2 Solid Oxide Fuel Cell 2
1.2.1 Proton conducting Solid Oxide Fuel Cell (P-SOFC) 2
1.2.2 Oxygen conducting Solid Oxide Fuel Cell (O-SOFC) 2
1.3 Motivation 3
1.3.1 Cathode design 3
1.3.2 Ni (y) doped La0.5Sr0.5Co0.2Fe0.8-x 3
1.3.3 G/N ratio and pH control in the combustion process 3
1.3.4 Cell performance 3
2 Literature review 5
2.1 Triple phase boundary 5
2.2 Perovskite Materials 6
2.3 Cathode Materials ( Lanthanium-based) 7
2.3.1 The Cathode Materials LSC and LSM 7
2.3.2 Introduction to cathode material LSCF 8
2.3.3 Effect of doping metal Nickel at B-site 11
2.4 Cathode powder synthesis method. 12
2.4.1 Solid state reaction method 12
2.4.2 Hydrothermal method 12
2.4.3 Sol-gel method 13
2.4.4 Combustion method 14
2.5 Fabrication cathode materials 16
2.6 The performance of electrochemical 17
2.7 Electrochemical Impedance Study 18
3. Stage Planning and Experimental Method 20
3.1 Stage planning for experimental 20
3.2 Sample Preparation 22
3.2.1 Cathode Sample Preparation 22
3.2.2 Conductivities Sample Preparation 23
3.2.3 Thermal expansion coefficient Sample Preparation 23
3.2.4 Cathode Paste Binder Preparation 24
3.2.5 Electrolyte-supported Preparation 24
3.3 X-ray diffraction (XRD) 25
3.4 Scanning Electron Microscope (SEM) 26
3.5 Thermo Gravity Analysis (TGA) 26
3.6 Conductivities Measurement 27
3.7 DC polarization curve test platform 27
3.8 Electrochemical AC impedance spectrometer 27
4. Results 29
4.1 X-Ray crystal diffraction analysis 29
4.1.1 The X-ray diffraction pattern LSCF55 29
4.1.2 The X-ray diffraction pattern LSCF55N1, LSCF55N2, LSCF55N3 30
4.2 LSCF55 cathode surface morphology 30
4.3 Cathode powder thermo-gravimetric analysis 30
4.3.1 Thermo-gravimetric analysis of LSCF55 31
4.3.2 Thermo-gravimetric analysis of LSCF55N1, LSCF55N2, LSCF55N3 31
4.4 Thermal expansion coefficients of LSCF55, LSCF55N1, LSCF55N2, LSCF55N3. 31
4.5 Cathode Conductivities Measurement 32
4.6 DC polarization curve test analysis (Power density) 32
4.6.1 DC polarization curve of LSCF64N1, LSCF55N1, LSCF46N1 32
4.6.2 DC polarization curve of LSCF55, LSCF55N1, LSCF55N2, LSCF55N3 32
4.6.3 DC polarization curve for O-type testing Pt/LSGM/LSCF55N3 33
4.6.4 DC polarization curve using Anode Supported Cell (ASC) 33
4.7 Electrochemical AC impedance spectrum analysis 33
4.7.1 The Electrochemical Impedance of LSCF64N1, LSCF55N1, LSCF46N1 33
4.7.2 The Electrochemical Impedance of LSCF55, LSCF55N1, LSCF55N2, LSCF55N3 34
4.7.3 The Electrochemical Impedance of O-type testing Pt/LSGM/LSCF55N3 34
4.7.4 The Electrochemical Impedance of Anode Supported Cells 34
5 .Discussion 34
5.1 LSCF55 and LSCF55N1, LSCF55N2, LSCF55N3 Powder by Combustion Synthesis Method 34
5.1.1 LSCF55 34
5.1.2 LSCF55N1, LSCF55N2, LSCF55N3 35
5.2 Characteristic Analysis on Cathode Sample. 36
5.2.1 Oxygen Vacancies-compare with another paper 36
5.2.2 Thermal expansion coefficient 36
5.2.3 Conductivities 37
5.3 Full Cell Performance 37
5.3.1 Single Cells LSCF64N1, LSCF55N1, LSCF46N1 Cell Performance 37
5.3.2 Single Cells LSCF55N1, LSCF55N2, LSCF55N3 Cell Performance 37
5.3.3 Single Cells testing with LSGM and Anode Supported Cell Performan 38
6 .Conclusion and Outlook 39
7. References 40
8 . Table Details 45
9.Figure Details 58
參考文獻 [1] Universal of Cambridge Department of Chemical Engineering and Biotechnology, Fuel Cell https://www.ceb.cam.ac.uk/research/groups/rg-eme/Edu/fuelcells
[2] Steele BCH,“Materials for IT-SOFC stacks 35 years R&D: the inevitability of gradualness” Solid State Ionics 2000, 134(1-2), 3-20.
[3] J. Larminie, A. Dicks, “Fuel Cell Systems Explained”, 2nd Edition, 2003.
[4] Z. Chen, “Mechanical Properties of La0.6Sr0.4Co0.2Fe0.8O3 Fuel Cell Electrodes Thesis”, Imperial College London, April 2014.
[5] N. Mahato, A. Banerjee, A. Gupta, S. Omar, K. Balani, “Progress in material selection for solid oxide fuel cell technology: A review”, Progress in Materials Science 72, 2015, 141–337.
[6] Triple Phase Boundary,https://en.wikipedia.org/wiki/Triple_phase_boundary.
[7] G. Kaur, “SOFC Technology: Its Working and Components, Solid Oxide Fuel Cell Component”, December 2015, pp 79-122.
[8] A.F. Wells , “Structural Inorganic Chemistry”, New York: Oxford University Press, 1984.
[9] Perovskite structure,http://mrc.iisc.ernet.in/Research_Areas/01_Perovskite.htm.
[10] B. H. J MaB, A.J, “Dense Ceramic Membranes for Oxygen Separation In: Solid State Electrochemistry”, 1997, 481-553.
[11] Y.S. Chou, J.W. Stevenson, T.R. Amstrong, L.R Pederson, “Mechanical Properties of La1-xSrxCo0.2Fe0.8O3- Mixed-Conducting Perovskites Made by the Combustion Synthesis Technique”, Journal of American Ceramic Society, 2000 83 (6), 1457-1464.
[12] Y. Teraoka, H. M. Zhang, K. Okamoto, N. Yamazoe, “Mixed ionic-electronic conductivity of La1-xSrxCo1-yFeyO3- perovskite-type oxides”, Materials Research Bulletin 1988, 23(1):51-58.
[13] M. Katsuki, S. Wang, M. Dokiya, T. Hashimoto, “High temperature properties of La0.6Sr0.4Co0.8Fe0.2O3- oxygen nonstoichiometry and chemical diffusion constant”, Solid State Ionics 2003, 156, 3-4, 453-461.
[14] L. W. Tai, “Structure and Electrical Properties of La1-xSrxCo1-yFeyO3 Part 2: The System La1-xSrxCo0.2Fe0.8O3”, Solid State Ionics 1995, 76, 273-283.
[15] Y. Teraoka, “Oxygen-sorptive properties of defect perovskite-type La1-xSrxCo1-yFeyO3-“. Chemistry Letters 1985(9), 1367.
[16] N.Q. Minh, Ceramic Fuel Cells, “Journal of the American Ceramic Society”, 1993, 74(3), 563-588.
[17] S. B. Adler, “Mechanism and kinetics of oxygen reduction on porous La1-xSrxCoO3- electrodes”, Solid State Ionics, 1998, 111(1-2), 125-134.
[18] V. Doorn R.H.E, A.J. Burggraaf, “Structural aspects of the ionic conductivity of
La1-xSrxCoO3-“, Solid State Ionics, 2000, 128(1-4), 65-78.
[19] C. Brugnoni, “SOFC cathode/electrolyte interface Part I: Reactivity between La0.85Sr0.15MnO3 and ZrO2-Y2O3”, Solid State Ionics, 1995, 76(3-4), 177.
[20] Y. Jiang, S. Wang, Y. Zhang, J. Yan, W. Li, “Electrochemical reduction of oxygen on a strontium doped lanthanum manganite electrode”, Solid State Ionics 1998, 110(1- 2), 111-119.
[21] J.V. Herle, A study on the La1-xSrxMnO3 oxygen cathode, Electrochimica Acta, 1996, 41(9), 1447.
[22] D.S. RA, “Oxygen transport in La1-xSrxMn1-yCoyO3-δ perovskites: Part I Oxygen tracer diffusion”, Solid State Ionics 1998, 106(3-4), 175.
[23] D.S. RA, “A SIMS study of oxygen tracer diffusion and surface exchange in La0.8Sr0.2MnO3-δ”, Materials letters 2000, 43(1-2), 43.
[24] L.W. Tai, M.M Nasrallah, H.U Anderson, D.M. Sparlin, S.R.Shelin, “Structure and electrical properties of La1-xSrxCo1-yFeyO3 Part 1. The system La0.8Sr0.2Co1-yFeyO3”, Solid State Ionics 1995, Volume 76, Issues 3-4, 259-271.
[25] B.C.H. Steele, “Oxygen transport and exchange in oxide ceramics”, Journal of Power Sources 1994, 49(1-3), 1-14.
[26] N. Yamazoe, “TPD and XPS study on thermal behavior of absorbed oxygen in La1-xSrxCoO3”, Chemistry Letters 1981, 10(12), 1767.
[27] H.U. Anderson, L.W Tai, C.C. Chen, Nasrallah MM, “Review of the structural and electrical properties of the LaSrCoFeO3 system”, Proceedings of the Fourth International Symposium on Solid Oxide Fuel Cells, 1995, 375-383.
[28] H. Ullmann, N. Trofimenko, F. Tietz, D. Stöver, A.A. Khanlou, “Correlation between thermal expansion and oxide ion transport in mixed conducting perovskite-type oxides for SOFC cathodes”, Solid State Ionics 2000, 138(1-2), 79-90.
[29] H.Y. Tu, Y. Takeda, N. Imanishi, O. Yamamoto, “Ln0.4Sr0.6Co0.8Fe0.2O3-[delta] (Ln=La, Pr, Nd, Sm, Gd) for the electrode in solid oxide fuel cells”, Solid State Ionics 1999, 117(3-4), 277-281.
[30] L. Kindermann, D. Das, H. Nickel, K. Hilpert, “Chemical compatibility of the LaFeO3 base perovskites (La0.6Sr0.4)Fe0.8M0.2O3 - [delta] (z = 1, 0.9; M = Cr, Mn, Co, Ni) with yttria stabilized zirconia”, Solid State Ionics 1996, 89(3-4), 215-220.
[31] A. Mai, V.A.C Haanappel, F. Tietz, D, Stöver, “Ferrite-based perovskites as cathode materials for anode-supported solid oxide fuel cells: Part II Influence of the CGO interlayer”, Solid State Ionics 2006, 177(19-25), 2103-2107.
[32] M. Shiono, K. Kobayashi, T.L. Nguyen, K. Hosoda, T. Kato, K. Ota, M. Dokiya, “Effect of CeO2 interlayer on ZrO2 electrolyte/La(Sr)CoO3 cathode for low temperature SOFCs” Solid State Ionics 2004, 170(1-2), 1-7.
[33] Fan, B. Yan, J. Yan, X, “The ionic conductivity, thermal expansion behavior, and chemical compatibility of La0.54Sr0.44Co0.2Fe0.8O3−δ as SOFC cathode material”, Solid State Sci. 2011, 13, 1835–1839.
[34] Z. Zhu, Z. Tao, L. Bi, W. Liu, “Investigation of SmBaCuCoO5+δ double-perovskite as cathode for proton conducting solid oxide fuel cells”, Mater. Res. Bull. 2010, 45, 1771–1774.
[35] J.H. Kim, R.H. Song, D.Y. Chung, S.H. Hyun, D.R. Shin, “Degradation of cathode current-collecting materials for anode-supported flat-tube solid oxide fuel cell”, J. Power Sources 2009, 188, 447–452.
[36] J. Harris, C. Metcalfe, M. Marr, J. Kuhn, O. Kesler “Fabrication and characterization of solid oxide fuel cell cathodes made from nano-structured LSCF-SDC composite feedstock” J. Power Sources 2013, 239, 234–243.
[37] Teraoka Y, “Oxygen permeation through perovskite-type oxides”, Chemistry Letters 1985(11), 1743.
[38] A. HU, L. W. Tai, C.C. Chen, M. M. Nasrallah, “Review of the structural and electrical properties of the LaSrCoFeO3 system”, Proceedings of the Fourth International Symposium on Solid Oxide Fuel Cells 1995, 375-383.
[39] D. Papargyriou, J. T .S. Irvine, “Nickel nanocatalyst exsolution from (La,Sr) (Cr,M,Ni)O3 (MMn,Fe) perovskites for the fuel oxidation layer of Oxygen Transport Membranes” ,Solid State Ionics, Volume 288, May 2016, Pages 120-123.
[40] N. Lakshminarayanan, H. Choi, J. N.Kuhn, U. S. Ozkan, “Effect of additional B-site transition metal doping on oxygen transport and activation characteristics in La0.6Sr0.4(Co0.18Fe0.72X0.1)O3−δ (where X = Zn, Ni or Cu) perovskite oxides”, Applied Catalysis B: Environmental, Volume 103, Issues 3-4, 5 April 2011, Pages 318-325.
[41] Y. Matsumoto, S. Yamada, T. Nishida, E. Sato, “Oxygen Evolution on La1–xSrxFel–yCoyO3 Series Oxides”, J. Electro chem. Soc. 1980, 127, 2360–2364.
[42] Y. J. He, X. F. Chang, X. L. Dong, C. Zhang, W. Q. Jin, N. P. Xu, “Effect of dopant valence on the oxygen desorption and oxygen permeability of SrCo0.4Fe0.5M0.1O3d (M =Ni, Al and Zr) mixed-conducting oxides”, Chinese Chemical Letters 19 (2008), 725–729.
[43] Solid State Reaction,https://en.m.wikipedia.org/wiki/Solid-state_reaction_route.
[44] Hydrothermal Synthesis, https://en.wikipedia.org/wiki/Hydrothermal_synthesis
[45] Sol-gel process, https://en.wikipedia.org/wiki/Sol%E2%80%93gel_process
[46] Hanaor D.A.H, Chironi I, Karatchevtseva I, Triani G, Sorrell, C. C, “Single and Mixed Phase TiO2 Powders Prepared by Excess Hydrolysis of Titanium Alkoxide”, Advances in Applied Ceramics, 111 (3), 149 158.
[47] Combustion, https://en.wikipedia.org/wiki/Combustion.
[48] L.A. Chick, L.R. Pederson, G.D. Maupin , L. Bates, L. E. Thomas, G. J. Exarhos,
“Glycine-nitrate combustion synthesis of oxide ceramic powders”, Material Letters, Volume 10, Issues 1-2, September 1990, Page 6-12.
[49] R. O’hayre, S.-W. Cha, and W. Colella, “Fuel Cell Fundamentals”, 3rd ed. (2016) p. 603.
[50] K. Huang, J. B. Goodenough, “Solid oxide fuel cell technology”, 2009, p. 328.
[51] B. S. Prakash, S. S. Kumar, and S. T. Aruna, “Properties and development of Ni / YSZ as an anode material in solid oxide fuel cell: A review”, Renewable and Sustainable Energy Reviews 36, 2014, 419.
[52] S. Gamble, “Fabrication – microstructure – performance relationships of reversible solid oxide fuel cell electrodes – review”, Material Science and Technology 27, 2011, 1485.
[53] A. Leonide, “SOFC Modelling and Parameter Identification by means of Impedance Spectroscopy”, Ph.D. thesis Karlsruher Institut für Technologie Fakultät, 2010.
[54] A. Lasia, “Zeitschrift für Physikalische Chemie”, Vol. 29, 2014, pp. 287–288.
[55] M. E. ORAZEM and B. TRIBOLLET, “THE ELECTROCHEMICAL SOCIETY SERIES”, Vol 1, 2008.
[56] X. Yuan, C. Song, H. Wang, and J. Zhang, “Journal of Chemical Information and Modeling”, 2010, p. 420.
[57] W. Y. Lee, D. Wee, and A. F. Ghoniem, “An improved one-dimensional membrane-electrode assembly model to predict the performance of solid oxide fuel cell including the limiting current density”, 2009.
[58] Y. Fu, “Theoretical and Experimental Study of Solid Oxide Fuel Cell (SOFC) Using Impedance Spectra”, Ph.D. thesis Massachusetts Institute of Technology, 2014.
[59] C. Sun, “Cathode materials for solid oxide fuel cells: a review”, Journal of Solis State Electrochemical, 2010, 14, 1125-1144.

[60] S. Guo, F. Puleo, L. Wang, H. Wu, L. F. Liotta, “La0.6Sr0.4Co0.2Fe0.79M0.01O3-δ (M = Ni, Pd) perovskites synthesized by Citrate-EDTA method: Oxygen vacancies effect on electrochemical properties”, Advanced Powder Technology, Advanced Powder Technology xxx (2018) xxx–xxx.
[61] Q. A. Huang, “A review of AC impedance modeling and validation in SOFC diagnosis”, Electrochemical Acta, 2007, 52, 8144-8164.
[62] B. Liu, “Ba0.5Sr0.5Co0.8Fe0.2O3 nanopowders prepared by glycine-nitrate process for solid oxide fuel cell cathode”, Journal of Alloys and Compounds, 2008, 453, 418-422.
[63] H. A. Taroco, “Ceramic Materials for Solid Oxide Fuel Cells, Advances in Ceramics - Synthesis and Characterization, Processing and Specific Applications, Processing and Specific Applications”, Prof. Costas Sikalidis (Ed.).
[64] Y. H. Lim, “Electrochemical performance of Ba0.5Sr0.5CoxFe1-XO3-δ (x=0.2-0.8) cathode on a ScSZ electrolyte for intermediate temperature SOFCs”, Journal of Power Sources 2007, 171, 79-85.
[65] A. Longo, “The Effect of Ni Doping on the Performance and Electronic Structure of LSCF Cathodes Used for IT-SOFCs”, J. Phys. Chem. C 2018, 122, 1003−1013
[66] V.Øygarden, T.Grande, “The effect of Zr-Substitution in La1-xSrxCo0.2M0.6Zr0.2O3-δ, thermal expansion and electronic transport properties”, Solid State Ionics, Solid State Ionics 301, (2017) 53–58.
[67] C.C. Hwang, “Development of a novel combustion synthesis method for synthesizing of ceramic oxide powders”, Materials Science and Engineering B, 111, 49-56, 2004.
[68] C.C. Hwang, T. Wu, J. Wan, J. Tsai, “Development of a novel combustion synthesis method for synthesizing of ceramic oxide powders”, Materials Science and Engineering B, 2004, 111, 49–56.
[69] J. Fleig, “Solid oxide fuel cell cathodes: Polarization mechanisms and modeling of the electrochemical performance”, Annu. Rev. Mater. Res. 33 2003, 361–382.
指導教授 林景崎(Lin Jing-Chie) 審核日期 2019-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明