參考文獻 |
[1] Universal of Cambridge Department of Chemical Engineering and Biotechnology, Fuel Cell https://www.ceb.cam.ac.uk/research/groups/rg-eme/Edu/fuelcells
[2] Steele BCH,“Materials for IT-SOFC stacks 35 years R&D: the inevitability of gradualness” Solid State Ionics 2000, 134(1-2), 3-20.
[3] J. Larminie, A. Dicks, “Fuel Cell Systems Explained”, 2nd Edition, 2003.
[4] Z. Chen, “Mechanical Properties of La0.6Sr0.4Co0.2Fe0.8O3 Fuel Cell Electrodes Thesis”, Imperial College London, April 2014.
[5] N. Mahato, A. Banerjee, A. Gupta, S. Omar, K. Balani, “Progress in material selection for solid oxide fuel cell technology: A review”, Progress in Materials Science 72, 2015, 141–337.
[6] Triple Phase Boundary,https://en.wikipedia.org/wiki/Triple_phase_boundary.
[7] G. Kaur, “SOFC Technology: Its Working and Components, Solid Oxide Fuel Cell Component”, December 2015, pp 79-122.
[8] A.F. Wells , “Structural Inorganic Chemistry”, New York: Oxford University Press, 1984.
[9] Perovskite structure,http://mrc.iisc.ernet.in/Research_Areas/01_Perovskite.htm.
[10] B. H. J MaB, A.J, “Dense Ceramic Membranes for Oxygen Separation In: Solid State Electrochemistry”, 1997, 481-553.
[11] Y.S. Chou, J.W. Stevenson, T.R. Amstrong, L.R Pederson, “Mechanical Properties of La1-xSrxCo0.2Fe0.8O3- Mixed-Conducting Perovskites Made by the Combustion Synthesis Technique”, Journal of American Ceramic Society, 2000 83 (6), 1457-1464.
[12] Y. Teraoka, H. M. Zhang, K. Okamoto, N. Yamazoe, “Mixed ionic-electronic conductivity of La1-xSrxCo1-yFeyO3- perovskite-type oxides”, Materials Research Bulletin 1988, 23(1):51-58.
[13] M. Katsuki, S. Wang, M. Dokiya, T. Hashimoto, “High temperature properties of La0.6Sr0.4Co0.8Fe0.2O3- oxygen nonstoichiometry and chemical diffusion constant”, Solid State Ionics 2003, 156, 3-4, 453-461.
[14] L. W. Tai, “Structure and Electrical Properties of La1-xSrxCo1-yFeyO3 Part 2: The System La1-xSrxCo0.2Fe0.8O3”, Solid State Ionics 1995, 76, 273-283.
[15] Y. Teraoka, “Oxygen-sorptive properties of defect perovskite-type La1-xSrxCo1-yFeyO3-“. Chemistry Letters 1985(9), 1367.
[16] N.Q. Minh, Ceramic Fuel Cells, “Journal of the American Ceramic Society”, 1993, 74(3), 563-588.
[17] S. B. Adler, “Mechanism and kinetics of oxygen reduction on porous La1-xSrxCoO3- electrodes”, Solid State Ionics, 1998, 111(1-2), 125-134.
[18] V. Doorn R.H.E, A.J. Burggraaf, “Structural aspects of the ionic conductivity of
La1-xSrxCoO3-“, Solid State Ionics, 2000, 128(1-4), 65-78.
[19] C. Brugnoni, “SOFC cathode/electrolyte interface Part I: Reactivity between La0.85Sr0.15MnO3 and ZrO2-Y2O3”, Solid State Ionics, 1995, 76(3-4), 177.
[20] Y. Jiang, S. Wang, Y. Zhang, J. Yan, W. Li, “Electrochemical reduction of oxygen on a strontium doped lanthanum manganite electrode”, Solid State Ionics 1998, 110(1- 2), 111-119.
[21] J.V. Herle, A study on the La1-xSrxMnO3 oxygen cathode, Electrochimica Acta, 1996, 41(9), 1447.
[22] D.S. RA, “Oxygen transport in La1-xSrxMn1-yCoyO3-δ perovskites: Part I Oxygen tracer diffusion”, Solid State Ionics 1998, 106(3-4), 175.
[23] D.S. RA, “A SIMS study of oxygen tracer diffusion and surface exchange in La0.8Sr0.2MnO3-δ”, Materials letters 2000, 43(1-2), 43.
[24] L.W. Tai, M.M Nasrallah, H.U Anderson, D.M. Sparlin, S.R.Shelin, “Structure and electrical properties of La1-xSrxCo1-yFeyO3 Part 1. The system La0.8Sr0.2Co1-yFeyO3”, Solid State Ionics 1995, Volume 76, Issues 3-4, 259-271.
[25] B.C.H. Steele, “Oxygen transport and exchange in oxide ceramics”, Journal of Power Sources 1994, 49(1-3), 1-14.
[26] N. Yamazoe, “TPD and XPS study on thermal behavior of absorbed oxygen in La1-xSrxCoO3”, Chemistry Letters 1981, 10(12), 1767.
[27] H.U. Anderson, L.W Tai, C.C. Chen, Nasrallah MM, “Review of the structural and electrical properties of the LaSrCoFeO3 system”, Proceedings of the Fourth International Symposium on Solid Oxide Fuel Cells, 1995, 375-383.
[28] H. Ullmann, N. Trofimenko, F. Tietz, D. Stöver, A.A. Khanlou, “Correlation between thermal expansion and oxide ion transport in mixed conducting perovskite-type oxides for SOFC cathodes”, Solid State Ionics 2000, 138(1-2), 79-90.
[29] H.Y. Tu, Y. Takeda, N. Imanishi, O. Yamamoto, “Ln0.4Sr0.6Co0.8Fe0.2O3-[delta] (Ln=La, Pr, Nd, Sm, Gd) for the electrode in solid oxide fuel cells”, Solid State Ionics 1999, 117(3-4), 277-281.
[30] L. Kindermann, D. Das, H. Nickel, K. Hilpert, “Chemical compatibility of the LaFeO3 base perovskites (La0.6Sr0.4)Fe0.8M0.2O3 - [delta] (z = 1, 0.9; M = Cr, Mn, Co, Ni) with yttria stabilized zirconia”, Solid State Ionics 1996, 89(3-4), 215-220.
[31] A. Mai, V.A.C Haanappel, F. Tietz, D, Stöver, “Ferrite-based perovskites as cathode materials for anode-supported solid oxide fuel cells: Part II Influence of the CGO interlayer”, Solid State Ionics 2006, 177(19-25), 2103-2107.
[32] M. Shiono, K. Kobayashi, T.L. Nguyen, K. Hosoda, T. Kato, K. Ota, M. Dokiya, “Effect of CeO2 interlayer on ZrO2 electrolyte/La(Sr)CoO3 cathode for low temperature SOFCs” Solid State Ionics 2004, 170(1-2), 1-7.
[33] Fan, B. Yan, J. Yan, X, “The ionic conductivity, thermal expansion behavior, and chemical compatibility of La0.54Sr0.44Co0.2Fe0.8O3−δ as SOFC cathode material”, Solid State Sci. 2011, 13, 1835–1839.
[34] Z. Zhu, Z. Tao, L. Bi, W. Liu, “Investigation of SmBaCuCoO5+δ double-perovskite as cathode for proton conducting solid oxide fuel cells”, Mater. Res. Bull. 2010, 45, 1771–1774.
[35] J.H. Kim, R.H. Song, D.Y. Chung, S.H. Hyun, D.R. Shin, “Degradation of cathode current-collecting materials for anode-supported flat-tube solid oxide fuel cell”, J. Power Sources 2009, 188, 447–452.
[36] J. Harris, C. Metcalfe, M. Marr, J. Kuhn, O. Kesler “Fabrication and characterization of solid oxide fuel cell cathodes made from nano-structured LSCF-SDC composite feedstock” J. Power Sources 2013, 239, 234–243.
[37] Teraoka Y, “Oxygen permeation through perovskite-type oxides”, Chemistry Letters 1985(11), 1743.
[38] A. HU, L. W. Tai, C.C. Chen, M. M. Nasrallah, “Review of the structural and electrical properties of the LaSrCoFeO3 system”, Proceedings of the Fourth International Symposium on Solid Oxide Fuel Cells 1995, 375-383.
[39] D. Papargyriou, J. T .S. Irvine, “Nickel nanocatalyst exsolution from (La,Sr) (Cr,M,Ni)O3 (MMn,Fe) perovskites for the fuel oxidation layer of Oxygen Transport Membranes” ,Solid State Ionics, Volume 288, May 2016, Pages 120-123.
[40] N. Lakshminarayanan, H. Choi, J. N.Kuhn, U. S. Ozkan, “Effect of additional B-site transition metal doping on oxygen transport and activation characteristics in La0.6Sr0.4(Co0.18Fe0.72X0.1)O3−δ (where X = Zn, Ni or Cu) perovskite oxides”, Applied Catalysis B: Environmental, Volume 103, Issues 3-4, 5 April 2011, Pages 318-325.
[41] Y. Matsumoto, S. Yamada, T. Nishida, E. Sato, “Oxygen Evolution on La1–xSrxFel–yCoyO3 Series Oxides”, J. Electro chem. Soc. 1980, 127, 2360–2364.
[42] Y. J. He, X. F. Chang, X. L. Dong, C. Zhang, W. Q. Jin, N. P. Xu, “Effect of dopant valence on the oxygen desorption and oxygen permeability of SrCo0.4Fe0.5M0.1O3d (M =Ni, Al and Zr) mixed-conducting oxides”, Chinese Chemical Letters 19 (2008), 725–729.
[43] Solid State Reaction,https://en.m.wikipedia.org/wiki/Solid-state_reaction_route.
[44] Hydrothermal Synthesis, https://en.wikipedia.org/wiki/Hydrothermal_synthesis
[45] Sol-gel process, https://en.wikipedia.org/wiki/Sol%E2%80%93gel_process
[46] Hanaor D.A.H, Chironi I, Karatchevtseva I, Triani G, Sorrell, C. C, “Single and Mixed Phase TiO2 Powders Prepared by Excess Hydrolysis of Titanium Alkoxide”, Advances in Applied Ceramics, 111 (3), 149 158.
[47] Combustion, https://en.wikipedia.org/wiki/Combustion.
[48] L.A. Chick, L.R. Pederson, G.D. Maupin , L. Bates, L. E. Thomas, G. J. Exarhos,
“Glycine-nitrate combustion synthesis of oxide ceramic powders”, Material Letters, Volume 10, Issues 1-2, September 1990, Page 6-12.
[49] R. O’hayre, S.-W. Cha, and W. Colella, “Fuel Cell Fundamentals”, 3rd ed. (2016) p. 603.
[50] K. Huang, J. B. Goodenough, “Solid oxide fuel cell technology”, 2009, p. 328.
[51] B. S. Prakash, S. S. Kumar, and S. T. Aruna, “Properties and development of Ni / YSZ as an anode material in solid oxide fuel cell: A review”, Renewable and Sustainable Energy Reviews 36, 2014, 419.
[52] S. Gamble, “Fabrication – microstructure – performance relationships of reversible solid oxide fuel cell electrodes – review”, Material Science and Technology 27, 2011, 1485.
[53] A. Leonide, “SOFC Modelling and Parameter Identification by means of Impedance Spectroscopy”, Ph.D. thesis Karlsruher Institut für Technologie Fakultät, 2010.
[54] A. Lasia, “Zeitschrift für Physikalische Chemie”, Vol. 29, 2014, pp. 287–288.
[55] M. E. ORAZEM and B. TRIBOLLET, “THE ELECTROCHEMICAL SOCIETY SERIES”, Vol 1, 2008.
[56] X. Yuan, C. Song, H. Wang, and J. Zhang, “Journal of Chemical Information and Modeling”, 2010, p. 420.
[57] W. Y. Lee, D. Wee, and A. F. Ghoniem, “An improved one-dimensional membrane-electrode assembly model to predict the performance of solid oxide fuel cell including the limiting current density”, 2009.
[58] Y. Fu, “Theoretical and Experimental Study of Solid Oxide Fuel Cell (SOFC) Using Impedance Spectra”, Ph.D. thesis Massachusetts Institute of Technology, 2014.
[59] C. Sun, “Cathode materials for solid oxide fuel cells: a review”, Journal of Solis State Electrochemical, 2010, 14, 1125-1144.
[60] S. Guo, F. Puleo, L. Wang, H. Wu, L. F. Liotta, “La0.6Sr0.4Co0.2Fe0.79M0.01O3-δ (M = Ni, Pd) perovskites synthesized by Citrate-EDTA method: Oxygen vacancies effect on electrochemical properties”, Advanced Powder Technology, Advanced Powder Technology xxx (2018) xxx–xxx.
[61] Q. A. Huang, “A review of AC impedance modeling and validation in SOFC diagnosis”, Electrochemical Acta, 2007, 52, 8144-8164.
[62] B. Liu, “Ba0.5Sr0.5Co0.8Fe0.2O3 nanopowders prepared by glycine-nitrate process for solid oxide fuel cell cathode”, Journal of Alloys and Compounds, 2008, 453, 418-422.
[63] H. A. Taroco, “Ceramic Materials for Solid Oxide Fuel Cells, Advances in Ceramics - Synthesis and Characterization, Processing and Specific Applications, Processing and Specific Applications”, Prof. Costas Sikalidis (Ed.).
[64] Y. H. Lim, “Electrochemical performance of Ba0.5Sr0.5CoxFe1-XO3-δ (x=0.2-0.8) cathode on a ScSZ electrolyte for intermediate temperature SOFCs”, Journal of Power Sources 2007, 171, 79-85.
[65] A. Longo, “The Effect of Ni Doping on the Performance and Electronic Structure of LSCF Cathodes Used for IT-SOFCs”, J. Phys. Chem. C 2018, 122, 1003−1013
[66] V.Øygarden, T.Grande, “The effect of Zr-Substitution in La1-xSrxCo0.2M0.6Zr0.2O3-δ, thermal expansion and electronic transport properties”, Solid State Ionics, Solid State Ionics 301, (2017) 53–58.
[67] C.C. Hwang, “Development of a novel combustion synthesis method for synthesizing of ceramic oxide powders”, Materials Science and Engineering B, 111, 49-56, 2004.
[68] C.C. Hwang, T. Wu, J. Wan, J. Tsai, “Development of a novel combustion synthesis method for synthesizing of ceramic oxide powders”, Materials Science and Engineering B, 2004, 111, 49–56.
[69] J. Fleig, “Solid oxide fuel cell cathodes: Polarization mechanisms and modeling of the electrochemical performance”, Annu. Rev. Mater. Res. 33 2003, 361–382.
|