以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:83 、訪客IP:3.145.37.250
姓名 王重智(Chong0Zhih Wang) 查詢紙本館藏 畢業系所 應用地質研究所 論文名稱 運用數值計算進行楔形岩體破壞之敏感度分析
(Sensitivity study of wedge failure by using numerical calculation)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 一般常見的岩坡類型可分為四種:(1)平面型,(2)楔型,(3)圓弧型及(4)傾覆型。台灣位處於造山帶,斷層、節理,等構造發達,這些構造在岩體之中相互交錯易形成楔形,因此楔形破壞在台灣須格外注意。針對楔形岩體的穩定性分析,一般採用剛塊法,其假設楔形體為剛體,不考慮岩體本身變形性,忽略不連續面上垂直於兩不連續面交線之剪力,但以真實情形來看,面對大型的楔形體時,由於岩體的裂隙多,變形性大,若使用剛塊法做分析顯然會有偏差。因此李錫堤(1989)提出最大剪力強度法,假設不連續面上垂直兩不連續面交線之剪力等於岩體不連續面之剪力強度提供的最大剪力來做分析。由於真實岩體的性質多介於剛體與變形體之間,前者常會過估不連續面上之正向力以獲得較高的安全係數,而後者則有低估兩個不連續面上之正向力以致獲得較低安全係數的情形。實際上此兩方法正好提供了楔形岩體安全係數的上下邊界。
本研究為瞭解真實岩體不連續面上真實剪力大小以求得正向力來求取安全係數,擬使用數值模擬軟體Flac2D(7.0)/Flac3D(5.0)分析在不連續面上凝聚力為零時楔形體在不同的不連續面交線傾沒角、不同的面角大小及不連續面上不同的摩擦角的情況下其真實剪力為何,以求得岩體滑動前之安全係數,並找出合適的評估方式。
研究結果顯示,不連續面摩擦角大於不連續面交線傾沒角時,Flac2D 與Flac3D 計算之安全係數皆在前人定義上下邊界內,且其接近最大剪力強度法之結果。Flac2D 與Flac3D 計算結果相似,故可以Flac2D 做分析較為快速。Flac3D 計算之安全係數時若不連續面交線傾沒角大於不連續面摩擦角時須使用強度折減法計算。
摘要(英) Slope failure can be divided into four categories: (1) planer failure (2) wedge failure (3) circular failure (4) topple failure. Taiwan locates on Orogenic belts. There are a lot of geological structures, such as joint and faults. These structures cross each other and form rock wedge easily. In analysis of wedge stability, engineers use rigid block method commonly. The method assumed a wedge is a rigid body, and don’t consider deformability of the wedge. Therefore, shear force perpendicular to intersection line of the two discontinuities on the discontinuity plane can be neglected. However, when we are involving a large rock wedge, fractures and deformability can not be over looked. Lee (1989) proposes maximum shear strength method for a large rock wedge analysis. He assumed the shear force perpendicular to intersection line of the two discontinuities on the discontinuity is equal to the maximum shear force offering from shear strength of the discontinuity. In reality, the property of a rock wedge is between rigid body and deformable body. The former method would overestimate normal force which makes higher factor of safety, the latter would underestimate normal force which makes lower factor of safety. Thus the two methods, rigid wedge method and maximum shear strength method, provide the upper and lower boundary of factor of safety.
In this study, calculate the shear force of wedge to get factor of safety before wedge sliding. We use both Flac2D(7.0) and Flac3D(5.0) to compare which method is more suitable for calculating factor of safety in different cases by using different plunges of intersection line of two discontinuities, different dihedral angles and different friction angles of discontinuity.
The result of this study shows that if friction angle of discontinuity is larger than plunge of intersection line of two discontinuities, factor of safety calculated by Flac2D/Flac3D are between boundaries calculated by previous study and it is close to the result of maximum shear strength method. In addition, because the result of Flac2D and Flac3D is similar, Flac2D can be used for faster analysis When Flac3D is used, if friction angle of discontinuity is smaller than plunge of intersection line of two discontinuities, we should use shear strength reduction method to calculate factor of safety of the wedge.
關鍵字(中) ★ Flac2D/3D
★ 楔形破壞
★ 剛塊法
★ 最大剪力強度法關鍵字(英) ★ Flac2D/3D
★ wedge failure
★ rigid wedge method
★ maximum shear strength method論文目次 目錄
中文摘要................................................ I
英文摘要............................................... II
致謝................................................. III
目錄.................................................. IV
圖目錄............................................... VII
表目錄................................................ IX
第一章 緒論............................................. 1
1.1 研究動機與目的...................................... 1
1.2 研究內容............................................ 2
第二章 文獻回顧......................................... 3
2.1 楔形岩體破壞之穩定分析............................... 3
2.1.1 岩楔幾何參數之定義................................ 3
2.1.2 岩楔之力系與平衡................................... 5
2.1.3 剛塊法........................................... 8
2.1.4 最大剪力強度法.................................... 8
2.2 強度折減法......................................... 11
第三章 研究方法........................................ 13
3.1 Flac2D/3D 程式介紹................................ 13
3.1.1 基本理論與架構................................... 13
3.1.2 運算程序......................................... 15
3.1.3 組合律.......................................... 17
3.1.4 接觸面.......................................... 19
3.1.5 強度折減法....................................... 22
3.2 模型建立........................................... 24
3.2.1. 二維模型建立.................................... 24
3.2.2 三維模型建立..................................... 25
3.4 力學模式選擇及岩體、不連續面力學與幾何參數設定......... 25
3.5 研究流程........................................... 31
第四章 結果............................................ 37
4.1 作用力隨面角變化................................... 37
4.1.1 不連續面摩擦角大於等於I 線傾沒角.................. 37
4.1.2 不連續面摩擦角小於I 線傾沒角....................... 40
4.2 剪力強度比隨面角變化................................ 42
4.2.1 不連續面摩擦角大於等於I 線傾沒角................... 42
4.2.2 不連續面摩擦角小於I 線傾沒角...................... 45
4.3 安全係數.......................................... 47
4.3.1 不連續面摩擦角大於等於I 線傾沒角................... 47
4.3.2 不連續面摩擦角小於I 線傾沒角...................... 50
4.3.3 強度折減法...................................... 52
4.3.4 不同I 線傾沒角時之安全係數........................ 55
4.3.5 不同不連續面摩擦角時之安全係數..................... 57
第五章 討論............................................ 59
5.1 Flac2D 使用適用性.................................. 59
5.2 剛塊法與最大剪力強度法何者適用....................... 60
5.3 網格數目對數值影響.................................. 61
5.4 Flac3D 使用強度折減法之定義......................... 62
5.5 不連續面力學參數變化對數值之影響..................... 63
5.6 楔形岩體變形性對於安全係數影響....................... 63
5.7 水對於楔形岩體影響................................. 65
第六章 結論與建議....................................... 66
6.1 結論.............................................. 66
6.2 建議.............................................. 67
參考文獻............................................... 68
附錄 A Flac2D 及Flac3D 不連續面摩擦角10˚~40˚、I 線傾沒角10˚~45˚安全係數....................................... A-1
附錄 B Flac3D 強度折減法不連續面摩擦角小於I 線傾沒角之安全係數................................................... B-1
附錄 C Flac2D 及Flac3D 程式碼......................... C-1參考文獻 李錫堤(1989),岩楔安定性之敏感度分析,工程地質技術應用研討會論文集,315-343 頁。
阮氏鳳(2018),楔型滑動擬動態與動態分析-由剛性至變形塊體假設,國立中央大學應用地質研究所碩士論文,共116 頁。
徐鐵良(1993),地質與工程,台灣工程基本資料叢書之四,十一版,台北。
中興工程顧問社(1978),台北地區自來水第四期建設計畫水源工程定案研究專題報告E-壩址基礎岩盤各種試驗,66~74 頁。
Aydan, Ö., Kumsar, H. J. ( 2010 ) An experimental and theoretical approach on the modeling of sliding response of rock wedges under dynamic loading, Rock mechanics rock engineering, 43(6), 821-830.
Bandis, S., Lumsden, A., & Barton, N. ( 1983 ) Fundamentals of rock joint deformation, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstract, 13, 255-279.
Brinkgreve, R. B. J. & Bakker, H. L. ( 1991) Nonlinear finite element analysis of safety factors, Computer Methods and Advances in Geomechanics, 7, 1117-1122.
Cai, F., & Ugai, K. ( 2003 ), Finite element analysis of slope stabilization, In Proceedings of the twelfth Asian regional conference on soil mechanics and geotechnical engineering, 707-710.
Chen, Z. J. ( 2004 ) A generalized solution for tetrahedral rock wedge stability analysis, International Journal of Rock Mechanics and Mining Sciences, 41(4), 613-628.
Dawson, E., Roth, W., & Drescher, A. J. G. ( 1999 ) Slope stability analysis by strength reduction, Geotechnique, 49(6), 835-840.
Donald, I., & Giam, S. ( 1988 ) Application of the nodal displacement method to slope stability analysis, Fifth Australia-New Zealand Conference on Geomechanics: Prediction Versus Performance; Preprints of Papers, 466.
Itasca Consulting Group. ( 2007 ) FLAC 7.0 manual, Itasca Consulting Group Minneapolis.
Itasca Consulting Group. ( 2012 ) FLAC3D 5.0 manual, Itasca Consulting Group Minneapolis.
Ghosh, A., & Haupt, W. ( 1989 ) Computation of the seismic stability of rock wedges, Rock Mechanics and Rock Engineering, 22(2), 109-125.
Griffiths, D., & Lane, P. ( 1999 ) Slope stability analysis by finite elements, Geotechnique,49(3), 387-403.
Hoek, E., Bray, J. ( 1974 ) Rock Slope Engineering, London: Institution of Mining Metallurgy, 309p.
Hudson, J. A., & Harrison, J. P. ( 2000 ) Engineering rock mechanics: an introduction to the principles, 443p.
Jiang, Q., Liu, X., Wei, W., & Zhou, C. ( 2013 ) A new method for analyzing the stability of rock wedges, International Journal of Rock Mechanics and Mining Sciences, 60, 413-422.
Kramer, S. L., & Lindwall, N. W. ( 2004 ) Dimensionality and directionality effects in Newmark sliding block analyses, Journal of Geotechnical Geoenvironmental Engineering, 130(3), 303-315.
Kulhawy, F. H. ( 1975 ) Stress deformation properties of rock and rock discontinuities, Engineering Geology, 9(4), 327-350.
Kumsar, H., Aydan, Ö., & Ulusay, R. ( 2000 ) Dynamic and static stability assessment of rock slopes against wedge failures, Rock Mechanics and Rock Engineering, 33(1), 31-51.
Matsui, T., & San, K.-C. ( 1992 ) Finite element slope stability analysis by shear strength reduction technique, Soils and Foundations, 32(1), 59-70.
Naylor, D. ( 1982 ) Finite elements and slope stability, Numerical methods in geomechanics, 229-244.
Norrish, N. I., & Wyllie, D. C. ( 1996 ). Rock slope stability analysis, Landslides: Investigation Mitigation: Transportation Research Board Special Report, 247, 391-425.
Park, H., & West, T. ( 2001 ) Development of a probabilistic approach for rock wedge failure, Engineering Geology, 59(3-4), 233-251.
Rosso, R. ( 1976 ) A comparison of joint stiffness measurements in direct shear, triaxial compression, and in situ, International journal of rock mechanics and mining sciences & geomechanics, 13(6), 167-172.
Ugai, K., & Leshchinsky, D. ( 1995 ) Three-dimensional limit equilibrium and finite element analyses: a comparison of results, Soils and Foundations, 35(4), 1-7.
Ugai, K. J. ( 1989 ). A method of calculation of total safety factor of slope by elasto-plastic FEM, Soils and Foundations, 29(2), 190-195.
Yeung, M., Jiang, Q., & Sun, N. ( 2003 ) Validation of block theory and threedimensional discontinuous deformation analysis as wedge stability analysis methods, International Journal of Rock Mechanics and Mining Sciences, 40(2), 265-275.
Zienkiewicz, O. C., Humpheson, C., & Lewis, R. ( 1975 ) Associated and nonassociated visco-plasticity and plasticity in soil mechanics, Geotechnique, 25(4), 671-689.指導教授 李錫堤(Chyi-Tyi Lee) 審核日期 2019-8-19 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare