博碩士論文 105326020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:18.219.32.19
姓名 張智聖(Chih-Sheng Chang)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 抗生素抗性菌與抗性基因在污水處理程序中的動態變化
(Dynamics of antibiotic resistant bacteria and genes in the domestic wastewater treatment process)
相關論文
★ 埔心溪補助灌溉水水質與渠道底泥重金屬含量調查分析★ 桃園航空城三所國小周界大氣PAHs濃度探討
★ 無塵室揮發性有機氣體異味調查探討 -以某晶圓級封裝廠為例★ 利用土壤植栽與固相微萃取探討植作對非離子態有機污染物之吸收模式
★ 零價鐵與硫酸鹽的添加對於水田根圈環境汞 之生物有效性與菌相組成的影響★ 以紫外光/二氧化鈦光催化降解程序去除水溶液相內分泌干擾物質壬基苯酚之研究
★ 異化性鐵還原狀態下非生物性汞氧化還原 作用及其對地下水水質之影響★ 水溶液相中多壁奈米碳管分散懸浮與抑菌效果之相關性探討
★ 鄰近汞排放源之水稻田受現地地質化學與微生物影響之甲基汞生成與累積作用-以北投垃圾焚化爐為例★ 以淨水污泥灰及廢玻璃為矽鋁源合成MCM-41並應用於重鉻酸鹽吸附之研究
★ 鄰近汞排放源之水稻田受現地地質化學與微生物影響之甲基汞生成與累積作用 -以台中火力發電廠為例★ 細胞固定化影響厭氧氨氧化程序脫氮效能之研究
★ 藉由非抗性模式細菌對鎘之攝取機制探討量子點的生態毒性潛勢★ 利用生物性聚合物交聯所成穿透式網絡結構穩定污染土壤中之重金屬(鉛、鉻、鎘)
★ 蚯蚓處理加速堆肥廚餘去化可行性評估-以臺北市為例★ 氣相層析三段四極柱串聯質譜儀應用於多溴二苯醚環境樣品之分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來由於氣候變遷及人口快速上升,導致乾淨且可利用的水資源越來越稀少,因此污水回收再利用的需求及發展漸漸受到重視,未來也希望運用在用水量較多的農業灌溉,甚至是飲用水,但前提是再利用的水質需受到嚴格控管,這包括過往較常被忽略的生物性污染物,特別是抗生素抗性基因(antibiotic resistance genes, ARGs)與抗生素抗性菌(antibiotic resistance bacteria, ARB)。有鑒於污水處理廠已被認定為是原核生物獲取與交換抗性基因的潛在熱區,以及為了避免再生水中的抗生素抗藥性成為公共安全衛生和環境污染問題,本研究利用傳統細胞培養與qPCR基因定量等技術,並佐以參數彼此間相關性的統計分析,調查ARB與ARGs於污水處理單元的流佈,以期瞭解並掌握ARB與ARGs的動態變化、甚至預測其在污水處理程序過程的表現。調查結果顯示:(1)使用MBR處理後對於ARB (從5.2log – 6.2log CFU/mL降低至1.1log – 3.4log CFU/mL)、ARGs (從5.4log – 13.1log copy/L降低至0.6log – 8.2log copy/L)和class 1 integron (從11.5log – 12.9log copy/L降低至3.8log – 3.9log copy/L)具有顯著的絕對濃度去除效果;(2) ARB的絕對濃度經加氯或UV消毒後顯著下降(p < 0.05) (Acl廠:從4.3log – 6.1log CFU/mL降低至1.2log – 3.7log CFU/mL;Cuv廠:從3.0log – 4.6log CFU/mL降低至1.3log – 3.2log CFU/mL),且兩個處理廠的消毒處理前後變化率具顯著差異(p < 0.05);(3)有無加氯消毒或UV消毒對於ARGs和class 1 integron的絕對濃度前後變化率不具顯著差異(p > 0.05) (Acl廠:從5.5log – 11.2log copy/L降低至5.5log – 11.1log copy/L;Bmbr廠:從0.6log – 8.2log copy/L降低至1.6log – 5.6log copy/L;Cuv廠:從3.5log – 7.6log copy/L降低至3.4log – 8.5log copy/L);(4)經過MBR處理後對於ARGs和class 1 integron相對濃度有較好的處理效率;(5)經過加氯消毒和UV消毒對於ARGs的相對濃度的變化率不具顯著差異(p > 0.05),且加氯消毒對於整體ARGs和class 1 integron的相對濃度變化率呈現下降、UV消毒對於整體ARGs和class 1 integron呈現濃度上升;(6)冗餘分析顯示COD、總磷、總氮、總凱氏氮和pH與ARGs和class 1 integron具有相關係,與硝酸鹽氮、亞硝酸鹽氮、溶氧濃度和溫度的相關性較小。這些調查結果說明當處理廠使用MBR時可以有良好的 ARB和ARGs去除效果,但是對於目前常用的加氯和UV消毒方法則可能需要調整其操作參數或使用更有效的處理技術(如:臭氧、Fenton)以避免回收水中含有較多的 ARGs;此外,由相關性分析所得的結果表明ARGs在廢水處理程序的多寡似乎與一般的厭氧參數有較強的關聯性,對此值得後續加以追蹤與確認。
摘要(英) Due to climate change and population explosion, shortage of clean and safe water resources is becoming an increasingly serious problem worldwide. Development of reuse of domestic wastewater could be one of the solutions. Ultimately, it is aimed to use recycled wastewater in agricultural irrigation and even in drinking water. To meet this goal, the water quality of recycled wastewater has to be demanded absolutely safe at every level, both chemically and biologically. Given that wastewater treatment plants (WWTPs) have been considered hot spots for the proliferation of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs), investigating the dynamics of ARB and ARG levels during the wastewater treatment process and their association with other generic water quality parameters will be one step closer to the goal of wastewater reuse. In this study, influents and effluents of each operating unit of three WWTPs were collected in the Fall and Spring. In addition to generic water quality parameters, the collected samples were analyzed for the abundance of ARB ARGs via cell incubation and qPCR methods. Results show that: (1) After MBR treatment, the absolute abundances of ARB (from 5.2log – 6.2log CFU/mL to 1.1log – 3.4log CFU/mL), ARGs (from 5.4log – 13.1log copy/L to 0.6log – 8.2log copy/L) and class 1 integron (from 11.5log – 12.9log copy/L to 3.8log – 3.9log copy/L) are substantively reduced; (2) The absolute abundance of ARB is significantly decreased after chlorination or UV disinfection (p < 0.05) (plant Acl: from 4.3log – 6.1log CFU/mL to as low as 1.2log – 3.7log CFU/ml; plant Cuv: from 3.0log – 4.6log CFU/mL and reduced to 1.3log – 3.2log CFU/mL), and the removal rates between the two plants are significantly different (p < 0.05); (3) Neither chlorination nor UV disinfection results in a significant decrease in the absolute abundance of ARG and intI (p > 0.05) (plant Acl: 5.5log – 11.2log copy/L reduced to 5.5log – 11.1log copy/L, plant Bmbr: 0.6log – 8.2log copy/L reduced to 1.6log – 5.6log copy/L, plant Cuv: 3.5log – 7.6log copy/L reduced to 3.4log – 8.5log copy/L); (4) higher removal efficiency of ARGs and class 1 integron relative abundance is observed in MBR treatment; (5) chlorination and UV disinfection do not significantly affect relative abundances of ARGs; (6) RDA show that relative abundances of ARGs and class 1 integron correlate well with COD, total phosphorus, total nitrogen, total Kjeldahl nitrogen concentration and pH, and little with nitrate nitrogen, nitrite nitrogen, dissolved oxygen concentration and temperature. Together, these results indicate that WWTPs implementing MRB can have better ARB and ARGs removal efficiency, and current disinfection units that use chlorination and UV may need to adjust operating parameters or to adopt more effective technologies (e.g., ozonation, Fenton oxidation) to reduce the risk of higher levels of ARGs appearing in the recovered water. In addition, the strong association between ARGs and certain anaerobic parameters suggests that future investigation on this regard is warranted.
關鍵字(中) ★ 都市污水處理廠
★ 抗生素抗性菌
★ 抗生素抗性基因
★ 消毒程序
關鍵字(英) ★ Domestic treatment plant
★ antibiotic resistance bacteria
★ antibiotic resistance gene
★ disinfection procedure
論文目次 誌謝 i
摘要 ii
Abstract iv
圖目錄 ix
表目錄 x
一、前言 1
1.1 研究動機 1
1.2 研究目的 3
二、文獻回顧 4
2.1 抗生素抗性基因(ARGs) 與抗生素抗性菌(ARB)的傳播及影響 4
2.2 環境水體中ARGs與ARB的表現 6
2.3.1 污水處理廠中ARB和ARGs的表現 7
2.3.2 二級處理程序中ARB和ARGs濃度變化 9
2.3.3 消毒處理程序中ARB和ARGs濃度變化 10
2.4 水環境中抗生素的濃度 11
2.5 污水處理廠中抗生素的濃度 12
2.6 亞致死劑量與抗性表現 13
2.7 共選擇機制與污水廠中共選擇的表現 14
2.8 抗生素的使用現況 15
2.9 抗生素的作用機制 16
2.10 ARGs的作用機制 20
2.11 移動性基因元 23
三、研究方法 25
3.1 樣品採集 26
3.2 樣品前處理與保存 27
3.3 DNA萃取 29
3.4 目標基因標準品製備-基因擴增與純化 29
3.5 目標基因標準品製備-TA克隆與檢量線製備 30
3.6 目標基因定量 31
3.7 平板記數法 37
3.8 水質分析 37
3.9 統計分析 38
3.10 試劑與儀器 39
3.10.1 實驗試劑與分生試劑 39
3.10.2 實驗儀器 41
四、結果與討論 43
4.1 水質分析結果 43
4.2 ARB通過污水處理單元的絕對濃度變化 50
4.2.1 ARB通過沉澱池或MBR處理單元的絕對濃度變化 50
4.2.2 ARB通過消毒處理單元的絕對濃度變化 51
4.3 ARGs與intI1在污水處理單元的絕對濃度變化 55
4.3.1 ARGs通過污泥處理單元的絕對濃度變化 55
4.3.2 ARGs通過沉澱池和MBR的絕對濃度變化 56
4.3.3 ARGs通過消毒處理單元的絕對濃度變化 57
4.4 ARGs與intI1之間在污水處理單元的相關性 62
4.4.1 ARGs和intI1通過污泥處理單元的相對濃度變化 67
4.4.2 ARGs和intI1通過沉澱池或MBR處理單元的相對濃度變化 68
4.4.3 ARGs和intI1通過消毒處理單元的相對濃度變化 69
4.4.4 ARGs和ARB在污水處理單元的相對濃度變化 73
4.5 ARGs和intI1與水質參數的相關性 79
4.6 污水廠中ARB、ARGs與intI1在環境中的意義 81
五、結論與建議 83
5.1 結論 83
5.2建議 85
參考文獻 86
附錄 103
附錄1 目標基因之標準曲線 103
附錄2 目標基因的標準品之解離曲線(melting curve) 107
附錄3樣品的目標基因之解離曲線(melting curve) 112
附錄4 Bmbr廠內16S rRNA, ARGs和intI1的絕對濃度 121
附錄5 Cuv廠內16S rRNA, ARGs和intI1的絕對濃度 122
附錄6 總異營性菌和抗生素抗性菌與水質參數的冗餘分析 123
參考文獻 Aldred, Katie J., Robert J. Kerns, and Neil Osheroff. 2014. ′Mechanism of quinolone action and resistance′, Biochemistry, 53: 1565-1574.
Alexander, J., A. Bollmann, W. Seitz, and T. Schwartz. 2015. ′Microbiological characterization of aquatic microbiomes targeting taxonomical marker genes and antibiotic resistance genes of opportunistic bacteria′, Sci Total Environ, 512-513: 316-325.
Allen, Heather K., Justin Donato, Helena Huimi Wang, Karen A. Cloud-Hansen, Julian Davies, and Jo Handelsman. 2010. ′Call of the wild: antibiotic resistance genes in natural environments′, Nature Reviews Microbiology, 8: 251-259.
Alonso, Ana, Patricia Sanchez-Diaz, and Jose L. Martinez. 2001. Environmental selection of antibiotic resistance genes. Minireview.
Alpay-Karaoglu, Sengul, Osman Birol Ozgumus, Elif Sevim, Fetiye Kolayli, Ali Sevim, and Pinar Yesilgil. 2007. ′Investigation of antibiotic resistance profile and TEM-type β-lactamase gene carriage of ampicillin-resistantEscherichia coli strains isolated from drinking water′, Annals of Microbiology, 57: 281.
Aminov, R. I., N. Garrigues-Jeanjean, and R. I. Mackie. 2001a. ′Molecular ecology of tetracycline resistance: development and validation of primers for detection of tetracycline resistance genes encoding ribosomal protection proteins′, Appl Environ Microbiol, 67: 22-32.
Aminov, R. I., N. Garrigues-Jeanjean, and R. I. Mackie. 2001b. ′Molecular Ecology of Tetracycline Resistance: Development and Validation of Primers for Detection of Tetracycline Resistance Genes Encoding Ribosomal Protection Proteins′, Applied and Environmental Microbiology, 67: 22-32.
Amos, G. C. A., P. M. Hawkey, W. H. Gaze, and E. M. Wellington. 2014. ′Waste water effluent contributes to the dissemination of CTX-M-15 in the natural environment′, Journal of Antimicrobial Chemotherapy, 69: 1785-1791.
Armstrong, J. L., J. J. Calomiris, and R. J. Seidler. 1982. ′Selection of antibiotic-resistant standard plate count bacteria during water treatment′, Applied and Environmental Microbiology, 44: 308-316.
Aziz, Ramy, Marta Colomer-Lluch, Juan Jofre, and Maite Muniesa. 2011. ′Antibiotic Resistance Genes in the Bacteriophage DNA Fraction of Environmental Samples′, PLoS One, 6: e17549.
Baker-Austin, Craig, Meredith S. Wright, Ramunas Stepanauskas, and J. V. McArthur. 2006. ′Co-selection of antibiotic and metal resistance′, Trends in Microbiology, 14: 176-182.
Baquero, F., J. L. Martinez, and R. Canton. 2008. ′Antibiotics and antibiotic resistance in water environments′, Curr Opin Biotechnol, 19: 260-265.
Barkovskii, A.L., C.M. Babb, D. Hurley, and E. Shin. 2015. ′Origins and environmental mobility of antibiotic resistance genes, virulence factors and bacteria in a tidal creek′s watershed′, Journal of Applied Microbiology, 118: 764-776.
Batt, Angela L., Ian B. Bruce, and Diana S. Aga. 2006. ′Evaluating the vulnerability of surface waters to antibiotic contamination from varying wastewater treatment plant discharges′, Environmental Pollution, 142: 295-302.
Batt, Angela L., Sungpyo Kim, and Diana S. Aga. 2007. ′Comparison of the occurrence of antibiotics in four full-scale wastewater treatment plants with varying designs and operations′, Chemosphere, 68: 428-435.
Becerra-Castro, Cristina, Ana Rita Lopes, Ivone Vaz-Moreira, Elisabete F. Silva, Célia M. Manaia, and Olga C. Nunes. 2015. ′Wastewater reuse in irrigation: A microbiological perspective on implications in soil fertility and human and environmental health′, Environment International, 75: 117-135.
Berendonk, Thomas U., Celia M. Manaia, Christophe Merlin, Despo Fatta-Kassinos, Eddie Cytryn, Fiona Walsh, Helmut Burgmann, Henning Sorum, Madelaine Norstrom, Marie-Noelle Pons, Norbert Kreuzinger, Pentti Huovinen, Stefania Stefani, Thomas Schwartz, Veljo Kisand, Fernando Baquero, and Jose Luis Martinez. 2015. ′Tackling antibiotic resistance: the environmental framework′, Nat Rev Micro, 13: 310-317.
Bermingham, Alun, and Jeremy P Derrick. 2002. The folic acid biosynthesis pathway in bacteria: Evaluation of potential for antibacterial drug discovery.
Bougnom, Blaise P., and Laura J. V. Piddock. 2017. ′Wastewater for Urban Agriculture: A Significant Factor in Dissemination of Antibiotic Resistance′, Environmental Science & Technology, 51: 5863-5864.
Boxall, Alistair B A. 2004. ′The environmental side effects of medication′, EMBO reports, 5: 1110-1116.
Burch, Tucker R., Michael J. Sadowsky, and Timothy M. LaPara. 2014. ′Fate of Antibiotic Resistance Genes and Class 1 Integrons in Soil Microcosms Following the Application of Treated Residual Municipal Wastewater Solids′, Environmental Science & Technology, 48: 5620-5627.
Cantón, Rafael, and Teresa M. Coque. 2006. ′The CTX-M β-lactamase pandemic′, Current Opinion in Microbiology, 9: 466-475.
Cha, J. M., S. Yang, and K. H. Carlson. 2006. ′Trace determination of β-lactam antibiotics in surface water and urban wastewater using liquid chromatography combined with electrospray tandem mass spectrometry′, Journal of Chromatography A, 1115: 46-57.
Chanda, Sumitra, and Kalpna Rakholiya. 2011. Combination therapy: Synergism between natural plant extracts and antibiotics against infectious diseases.
Chang, Pin Hsuan, Brianna Juhrend, Terese M. Olson, Carl F. Marrs, and Krista R. Wigginton. 2017. ′Degradation of Extracellular Antibiotic Resistance Genes with UV254 Treatment′, Environ. Sci. Technol., 51: 6185–6192.
Chapman, John S. 2003. ′Disinfectant resistance mechanisms, cross-resistance, and co-resistance′, International Biodeterioration & Biodegradation, 51: 271-276.
Chen, J., Z. Yu, F. C. Michel, Jr., T. Wittum, and M. Morrison. 2007. ′Development and application of real-time PCR assays for quantification of erm genes conferring resistance to macrolides-lincosamides-streptogramin B in livestock manure and manure management systems′, Appl Environ Microbiol, 73: 4407-4416.
Chopra, Ian, and Marilyn Roberts. 2001. ′Tetracycline Antibiotics: Mode of Action, Applications, Molecular Biology, and Epidemiology of Bacterial Resistance′, Microbiology and Molecular Biology Reviews, 65: 232-260.
Chow, Louise, Liette Waldron, and Michael Gillings. 2015. ′Potential impacts of aquatic pollutants: sub-clinical antibiotic concentrations induce genome changes and promote antibiotic resistance′, Frontiers in Microbiology, 6.
Christgen, Beate, Ying Yang, S. Z. Ahammad, Bing Li, D. Catalina Rodriquez, Tong Zhang, and David W. Graham. 2015. ′Metagenomics Shows That Low-Energy Anaerobic−Aerobic Treatment Reactors Reduce Antibiotic Resistance Gene Levels from Domestic Wastewater′, Environmental Science & Technology, 49: 2577-2584.
Cordova-Kreylos, Ana Lucia, and Kate M. Scow. 2007. ′Effects of ciprofloxacin on salt marsh sediment microbial communities′, ISME J, 1: 585-595.
Czekalski, Nadine, Radhika Sigdel, Julia Birtel, Blake Matthews, and Helmut Bürgmann. 2015. ′Does human activity impact the natural antibiotic resistance background? Abundance of antibiotic resistance genes in 21 Swiss lakes′, Environment International, 81: 45-55.
Daghrir, R., and P. Drogui. 2013. ′Tetracycline antibiotics in the environment: a review′, Environmental Chemistry Letters, 11: 209-227.
Di Cesare, A., E. M. Eckert, S. D′Urso, R. Bertoni, D. C. Gillan, R. Wattiez, and G. Corno. 2016. ′Co-occurrence of integrase 1, antibiotic and heavy metal resistance genes in municipal wastewater treatment plants′, Water Res, 94: 208-214.
Dickin, S. K., C. J. Schuster-Wallace, M. Qadir, and K. Pizzacalla. 2016. ′A Review of Health Risks and Pathways for Exposure to Wastewater Use in Agriculture′, Environ. Health Persp., 124: 900.
Dodd, Michael C. 2012. ′Potential impacts of disinfection processes on elimination and deactivation of antibiotic resistance genes during water and wastewater treatment′, Journal of Environmental Monitoring, 14: 1754-1771.
Donato, Justin J., Luke A. Moe, Brandon J. Converse, Keith D. Smart, Flora C. Berklein, Patricia S. McManus, and Jo Handelsman. 2010. ′Metagenomic analysis of apple orchard soil reveals antibiotic resistance genes encoding predicted bifunctional proteins′, Applied and Environmental Microbiology, 76: 4396-4401.
Dunon, Vincent, Kristel Sniegowski, Karolien Bers, Rob Lavigne, Kornelia Smalla, and Dirk Springael. 2013. ′High prevalence of IncP-1 plasmids and IS1071 insertion sequences in on-farm biopurification systems and other pesticide-polluted environments′, FEMS Microbiology Ecology, 86: 415-431.
Etebu, Ebimieowei, and Ibemologi Arikekpar. 2016. "Antibiotics Classification and mechanisms of action with emphasis on molecular perspectives." In.
Ezzariai, Amine, Mohamed Hafidi, Ahmed Khadra, Quentin Aemig, Loubna El Fels, Maialen Barret, Georges Merlina, Dominique Patureau, and Eric Pinelli. 2018. ′Human and veterinary antibiotics during composting of sludge or manure: Global perspectives on persistence, degradation, and resistance genes′, Journal of Hazardous Materials, 359: 465-481.
Farias, Pedro, Christophe Espírito Santo, Rita Branco, Romeu Francisco, Susana Santos, Lars Hansen, Soren Sorensen, and Paula V. Morais. 2015. ′Natural Hot Spots for Gain of Multiple Resistances: Arsenic and Antibiotic Resistances in Heterotrophic, Aerobic Bacteria from Marine Hydrothermal Vent Fields′, Applied and Environmental Microbiology, 81: 2534-2543.
Finley, Rita L., Peter Collignon, D. G. Joakim Larsson, Scott A. McEwen, Xian-Zhi Li, William H. Gaze, Richard Reid-Smith, Mohammed Timinouni, David W. Graham, and Edward Topp. 2013. ′The Scourge of Antibiotic Resistance: The Important Role of the Environment′, Clinical Infectious Diseases, 57: 704-710.
Garner, Emily, Ni Zhu, Laurel Strom, Marc Edwards, and Amy Pruden. 2016. ′A human exposome framework for guiding risk management and holistic assessment of recycled water quality′, Environmental Science: Water Research & Technology, 2: 580-598.
Gillings, Michael R., William H. Gaze, Amy Pruden, Kornelia Smalla, James M. Tiedje, and Yong-Guan Zhu. 2015. ′Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution′, The ISME Journal, 9: 1269-1279.
Golet, Eva M., Alfredo C. Alder, and Walter Giger. 2002. ′Environmental Exposure and Risk Assessment of Fluoroquinolone Antibacterial Agents in Wastewater and River Water of the Glatt Valley Watershed, Switzerland′, Environmental Science & Technology, 36: 3645-3651.
Gulkowska, A., H. W. Leung, M. K. So, S. Taniyasu, N. Yamashita, Leo W. Y. Yeung, Bruce J. Richardson, A. P. Lei, J. P. Giesy, and Paul K. S. Lam. 2008. ′Removal of antibiotics from wastewater by sewage treatment facilities in Hong Kong and Shenzhen, China′, Water Research, 42: 395-403.
Gullberg, Erik, Lisa M. Albrecht, Christoffer Karlsson, Linus Sandegren, and Dan I. Andersson. 2014. ′Selection of a Multidrug Resistance Plasmid by Sublethal Levels of Antibiotics and Heavy Metals′, MBio, 5: e01918-01914.
Hamscher, Gerd, Beate Priess, and Heinz Nau. 2006. A survey of the occurrence of various sulfonamides and tetracyclines in water and sediment samples originating from aquaculture systems in Northern Germany in summer 2005.
Hassen, A., N. Saidi, M. Cherif, and A. Boudabous. 1998. ′Resistance of environmental bacteria to heavy metals′, Bioresource Technology, 64: 7-15.
Hatosy, Stephen M., and Adam C. Martiny. 2015. ′The Ocean as a Global Reservoir of Antibiotic Resistance Genes′, Applied and Environmental Microbiology, 81: 7593-7599.
He, Huan, Peiran Zhou, Kyle K. Shimabuku, Xuzhi Fang, Shu Li, Yunho Lee, and Michael C. Dodd. 2019. ′Degradation and Deactivation of Bacterial Antibiotic Resistance Genes during Exposure to Free Chlorine, Monochloramine, Chlorine Dioxide, Ozone, Ultraviolet Light, and Hydroxyl Radical′, Environmental Science & Technology, 53: 2013-2026.
Hembach, Norman, Ferdinand Schmid, Johannes Alexander, Christian Hiller, Eike T. Rogall, and Thomas Schwartz. 2017. ′Occurrence of the mcr-1 Colistin Resistance Gene and other Clinically Relevant Antibiotic Resistance Genes in Microbial Populations at Different Municipal Wastewater Treatment Plants in Germany′, Frontiers in Microbiology, 8: 1282.
Hirsch, Roman, Thomas Ternes, Klaus Haberer, and Karl-Ludwig Kratz. 1999. ′Occurrence of antibiotics in the aquatic environment′, Science of The Total Environment, 225: 109-118.
Hong, Weiling, Jie Zeng, and Jianping Xie. 2014. ′Antibiotic drugs targeting bacterial RNAs′, Acta pharmaceutica Sinica. B, 4: 258-265.
Hruska, Karel, and Milan Fránek. 2012. Sulfonamides in the environment: A review and a case report.
Hsu, Chao-Yu, Bing-Mu Hsu, Wen-Tsai Ji, Tien-Yu Chang, Po-Min Kao, Shao-Feng Tseng, Tsung-Yu Shen, Feng-Cheng Shih, Cheng-Wei Fan, and Jorn-Hon Liu. 2014. ′A Potential Association Between Antibiotic Abuse and Existence of Related Resistance Genes in Different Aquatic Environments′, Water, Air, & Soil Pollution, 226: 2235.
Hsueh, Po-Ren, Cheng-Yi Liu, and Kwen-Tay Luh. 2002. ′Current Status of Antimicrobial Resistance in Taiwan′, Emerging Infectious Diseases, 8: 132-137.
Huang, Jing-Jing, Hong-Ying Hu, Fang Tang, Yi Li, Sun-Qin Lu, and Yun Lu. 2011. ′Inactivation and reactivation of antibiotic-resistant bacteria by chlorination in secondary effluents of a municipal wastewater treatment plant′, Water Research, 45: 2775-2781.
Huang, Jing-Jing, Hong-Ying Hu, Yin-Hu Wu, Bin Wei, and Yun Lu. 2013. ′Effect of chlorination and ultraviolet disinfection on tetA-mediated tetracycline resistance of Escherichia coli′, Chemosphere, 90: 2247-2253.
Huijbers, Patricia M. C., Hetty Blaak, Mart C. M. de Jong, Elisabeth A. M. Graat, Christina M. J. E. Vandenbroucke-Grauls, and Ana Maria de Roda Husman. 2014. ′Role of the Environment in the Transmission of Antimicrobial Resistance to Humans: A Review′, Environ. Sci. Technol., 49: 11993–12004.
Iwane, T., T. Urase, and K. Yamamoto. 2001. Possible impact of treated wastewater discharge on incidence of antibiotic resistant bacteria in river water.
Jechalke, Sven, Melanie Broszat, Friederike Lang, Christina Siebe, Kornelia Smalla, and Elisabeth Grohmann. 2015. ′Effects of 100 years wastewater irrigation on resistance genes, class 1 integrons and IncP-1 plasmids in Mexican soil′, Frontiers in Microbiology, 6: 163.
Jeong, Joonseon, Weihua Song, William J. Cooper, Jinyoung Jung, and John Greaves. 2010. ′Degradation of tetracycline antibiotics: Mechanisms and kinetic studies for advanced oxidation/reduction processes′, Chemosphere, 78: 533-540.
Kasprzyk-Hordern, Barbara, Richard M. Dinsdale, and Alan J. Guwy. 2009. ′The removal of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs during wastewater treatment and its impact on the quality of receiving waters′, Water Research, 43: 363-380.
Kim, Sungpyo, Peter Eichhorn, James N. Jensen, A. Scott Weber, and Diana S. Aga. 2005. ′Removal of Antibiotics in Wastewater:  Effect of Hydraulic and Solid Retention Times on the Fate of Tetracycline in the Activated Sludge Process′, Environmental Science & Technology, 39: 5816-5823.
Knapp, Charles W., Jan Dolfing, Phillip A. I. Ehlert, and David W. Graham. 2010. ′Evidence of Increasing Antibiotic Resistance Gene Abundances in Archived Soils since 1940′, Environ. Sci. Technol., 44: 580–587.
Kohanski, Michael, Daniel Dwyer, and James J Collins. 2010. How Antibiotics Kill Bacteria: From Targets to Networks.
Kolpin, Dana W., Edward T. Furlong, Michael T. Meyer, E. Michael Thurman, Steven D. Zaugg, Larry B. Barber, and Herbert T. Buxton. 2002. ′Pharmaceuticals, Hormones, and Other Organic Wastewater Contaminants in U.S. Streams, 1999−2000:  A National Reconnaissance′, Environmental Science & Technology, 36: 1202-1211.
Krapaca, I. G., S. Koikeb, M. T. Meyerc, D. D. Snowd, S.-F. J. Choua, R. I. Mackieb, W. R. Roya, S - J.C.Chee, and Sanfordb. 2004. ′Long-Term Monitoring of the Occurrence of Antibiotic Residues and Antibiotic Resistance Genes in Groundwater near Swine Confinement Facilities′.
Laht, Mailis, Antti Karkman, Veiko Voolaid, Christian Ritz, Tanel Tenson, Marko Virta, and Veljo Kisand. 2014. ′Abundances of Tetracycline, Sulphonamide and Beta-Lactam Antibiotic Resistance Genes in Conventional Wastewater Treatment Plants (WWTPs) with Different Waste Load′, PLoS One, 9: e103705.
Lambert, P. A. 2002. ′Mechanisms of antibiotic resistance in Pseudomonas aeruginosa′, Journal of the Royal Society of Medicine, 95 Suppl 41: 22-26.
Lauderdale, Tsai-Ling, Frank M. Aarestrup, Pei-Chen Chen, Jui-Fen Lai, Hui-Ying Wang, Yih-Ru Shiau, I. Wen Huang, and Che-Lun Hung. 2006. ′Multidrug resistance among different serotypes of clinical Salmonella isolates in Taiwan′, Diagnostic Microbiology and Infectious Disease, 55: 149-155.
Lee, Jangwoo, Jong Hun Jeon, Jingyeong Shin, Hyun Min Jang, Sungpyo Kim, Myoung Seok Song, and Young Mo Kim. 2017. ′Quantitative and qualitative changes in antibiotic resistance genes after passing through treatment processes in municipal wastewater treatment plants′, Science of The Total Environment, 605: 906-914.
Lester, Y., D. S. Aga, N. G. Love, R. R. Singh, I. Morrissey, and K. G. Linden. 2016. ′Integrative Advanced Oxidation and Biofiltration for Treating Pharmaceuticals in Wastewater′, Water Environ Res, 88: 1985-1993.
Li, Bing, Yong Qiu, Ji Li, Peng Liang, and Xia Huang. 2019. ′Removal of antibiotic resistance genes in four full-scale membrane bioreactors′, Science of The Total Environment, 653: 112-119.
Li, Nan, Xinbo Zhang, Wei Wu, and Xinhua Zhao. 2014. ′Occurrence, seasonal variation and risk assessment of antibiotics in the reservoirs in North China′, Chemosphere, 111: 327-335.
Lin, A. Y., T. H. Yu, and C. F. Lin. 2008. ′Pharmaceutical contamination in residential, industrial, and agricultural waste streams: risk to aqueous environments in Taiwan′, Chemosphere, 74: 131-141.
Lindberg, Richard H., Patrik Wennberg, Magnus I. Johansson, Mats Tysklind, and Barbro A. V. Andersson. 2005. ′Screening of Human Antibiotic Substances and Determination of Weekly Mass Flows in Five Sewage Treatment Plants in Sweden′, Environmental Science & Technology, 39: 3421-3429.
Lindsey, Michele E., Michael Meyer, and E. M. Thurman. 2001. ′Analysis of Trace Levels of Sulfonamide and Tetracycline Antimicrobials in Groundwater and Surface Water Using Solid-Phase Extraction and Liquid Chromatography/Mass Spectrometry′, Analytical Chemistry, 73: 4640-4646.
Luo, Yi, Daqing Mao, Michal Rysz, Qixing Zhou, Hongjie Zhang, Lin Xu, and Pedro JJ Alvarez. 2010. ′Trends in antibiotic resistance genes occurrence in the Haihe River, China′, Environmental science & technology, 44: 7220-7225.
Managaki, Satoshi, Ayako Murata, Hideshige Takada, Bui Cach Tuyen, and Nguyen H. Chiem. 2007. ′Distribution of Macrolides, Sulfonamides, and Trimethoprim in Tropical Waters: Ubiquitous Occurrence of Veterinary Antibiotics in the Mekong Delta′, Environmental Science & Technology, 41: 8004-8010.
Mao, Daqing, Shuai Yu, Michal Rysz, Yi Luo, Fengxia Yang, Fengxiang Li, Jie Hou, Quanhua Mu, and P. J. J. Alvarez. 2015. ′Prevalence and proliferation of antibiotic resistance genes in two municipal wastewater treatment plants′, Water Research, 85: 458-466.
Marti, E., J. Jofre, and J. L. Balcazar. 2013. ′Prevalence of antibiotic resistance genes and bacterial community composition in a river influenced by a wastewater treatment plant′, PLoS One, 8: e78906.
Martin, Juan F., and Paloma Liras. 1989. ′ORGANIZATION AND EXPRESSION OF GENES INVOLVED IN THE BIOSYNTHESIS OF ANTIBIOTICS AND OTHER SECONDARY METABOLITES′, Annual Review of Microbiology, 43: 173-206.
Martinez, Jose Luis. 2009. ′Environmental pollution by antibiotics and by antibiotic resistance determinants′, Environmental Pollution, 157: 2893-2902.
McKinney, Chad W., and Amy Pruden. 2012. ′Ultraviolet Disinfection of Antibiotic Resistant Bacteria and Their Antibiotic Resistance Genes in Water and Wastewater′, Environmental Science & Technology, 46: 13393-13400.
Miao, Xiu-Sheng, Farida Bishay, Mei Chen, and Chris D. Metcalfe. 2004. ′Occurrence of Antimicrobials in the Final Effluents of Wastewater Treatment Plants in Canada′, Environmental Science & Technology, 38: 3533-3541.
Michael, I., L. Rizzo, C. S. McArdell, C. M. Manaia, C. Merlin, and T. Schwartz. 2013. ′Urban waste water treatment plants as hotspots for the release of antibiotics in the environment: a review′, Water Res., 47: 957.
Minh, Tu Binh, Ho Wing Leung, I. Ha Loi, Wing Hei Chan, Man Ka So, J. Q. Mao, David Choi, James C. W. Lam, Gene Zheng, Michael Martin, Joseph H. W. Lee, Paul K. S. Lam, and Bruce J. Richardson. 2009. ′Antibiotics in the Hong Kong metropolitan area: Ubiquitous distribution and fate in Victoria Harbour′, Marine Pollution Bulletin, 58: 1052-1062.
Munir, Mariya, Kelvin Wong, and Irene Xagoraraki. 2011. ′Release of antibiotic resistant bacteria and genes in the effluent and biosolids of five wastewater utilities in Michigan′, Water Research, 45: 681-693.
Munita, Jose M., and Cesar A. Arias. 2016. ′Mechanisms of Antibiotic Resistance′, Microbiology spectrum, 4: 10.1128/microbiolspec.VMBF-0016-2015.
Murray, G. E., R. S. Tobin, B. Junkins, and D. J. Kushner. 1984. ′Effect of chlorination on antibiotic resistance profiles of sewage-related bacteria′, Applied and Environmental Microbiology, 48: 73-77.
Neudorf, Kara D., Yan Nan Huang, Colin M. Ragush, Christopher K. Yost, Rob C. Jamieson, and Lisbeth Truelstrup Hansen. 2017. ′Antibiotic resistance genes in municipal wastewater treatment systems and receiving waters in Arctic Canada′, Science of The Total Environment, 598: 1085-1094.
Ng, L. K., I. Martin, M. Alfa, and M. Mulvey. 2001a. ′Multiplex PCR for the detection of tetracycline resistant genes′, Molecular and Cellular Probes, 15: 209-215.
Ng, L. K., I. Martin, M. Alfa, and M. Mulvey. 2001b. ′Multiplex PCR for the detection of tetracycline resistant genes′, Mol Cell Probes, 15: 209-215.
Nolvak, H., M. Truu, K. Tiirik, K. Oopkaup, T. Sildvee, A. Kaasik, U. Mander, and J. Truu. 2013. ′Dynamics of antibiotic resistance genes and their relationships with system treatment efficiency in a horizontal subsurface flow constructed wetland′, Sci Total Environ, 461-462: 636-644.
Pal, Chandan, Johan Bengtsson-Palme, Christopher Rensing, Erik Kristiansson, and D. G. Joakim Larsson. 2014. ′BacMet: antibacterial biocide and metal resistance genes database′, Nucleic Acids Research, 42: D737-D743.
Pei, R., S. C. Kim, K. H. Carlson, and A. Pruden. 2006. ′Effect of river landscape on the sediment concentrations of antibiotics and corresponding antibiotic resistance genes (ARG)′, Water Res, 40: 2427-2435.
Peng, Xianzhi, Jianhua Tan, Caiming Tang, Yiyi Yu, and Zhendi Wang. 2008. ′Multiresidue determination of fluoroquinolone, sulfonamide, trimethoprim, and chloramphenicol antibiotics in urban waters in China′, Environmental Toxicology and Chemistry, 27: 73-79.
Pepper, Ian L., John P. Brooks, and Charles P. Gerba. 2018. ′Antibiotic Resistant Bacteria in Municipal Wastes: Is There Reason for Concern?′, Environmental Science & Technology, 52: 3949-3959.
Polesel, Fabio, Henrik R. Andersen, Stefan Trapp, and Benedek Gy Plósz. 2016. ′Removal of Antibiotics in Biological Wastewater Treatment Systems—A Critical Assessment Using the Activated Sludge Modeling Framework for Xenobiotics (ASM-X)′, Environmental Science & Technology, 50: 10316-10334.
Pruden, Amy. 2014. ′Balancing Water Sustainability and Public Health Goals in the Face of Growing Concerns about Antibiotic Resistance′, Environmental Science & Technology, 48: 5-14.
Reinthaler, F. F., J. Posch, G. Feierl, G. Wüst, D. Haas, G. Ruckenbauer, F. Mascher, and E. Marth. 2003. ′Antibiotic resistance of E. coli in sewage and sludge′, Water Research, 37: 1685-1690.
Rico, A., R. Oliveira, S. McDonough, A. Matser, J. Khatikarn, K. Satapornvanit, A. J. Nogueira, A. M. Soares, I. Domingues, and P. J. Van den Brink. 2014. ′Use, fate and ecological risks of antibiotics applied in tilapia cage farming in Thailand′, Environ Pollut, 191: 8-16.
Rizzo, L., C. Manaia, C. Merlin, T. Schwartz, C. Dagot, M. C. Ploy, I. Michael, and D. Fatta-Kassinos. 2013a. ′Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: A review′, Science of The Total Environment, 447: 345-360.
Rizzo, L., C. Manaia, C. Merlin, T. Schwartz, C. Dagot, M. C. Ploy, I. Michael, and D. Fatta-Kassinos. 2013b. ′Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review′, Sci Total Environ, 447: 345-360.
Silva, Juan, Gabriela Castillo, Lorena Callejas, Héctor López, and Janet Olmos. 2006. ′Frequency of transferable multiple antibiotic resistance amongst coliform bacteria isolated from a treated sewage effluent in Antofagasta, Chile′, Electronic Journal of Biotechnology, 9: 1-8.
Stoddard, Steven F., Byron J. Smith, Robert Hein, Benjamin R.K. Roller, and Thomas M. Schmidt. 2014. ′rrnDB: improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development′, Nucleic Acids Research, 43: D593-D598.
Subirats, Jèssica, Xisca Timoner, Alexandre Sànchez-Melsió, José Luis Balcázar, Vicenç Acuña, Sergi Sabater, and Carles M. Borrego. 2018. ′Emerging contaminants and nutrients synergistically affect the spread of class 1 integron-integrase (intI1) and sul1 genes within stable streambed bacterial communities′, Water Research, 138: 77-85.
Tahrani, Leyla, Leila Soufi, Ines Mehri, Afef Najjari, Abdenaceur Hassan, Joris Van Loco, Tim Reyns, Ameur Cherif, and Hedi Ben Mansour. 2015. ′Isolation and characterization of antibiotic-resistant bacteria from pharmaceutical industrial wastewaters′, Microbial Pathogenesis, 89: 54-61.
Tao, Wenda, Xu-Xiang Zhang, Fuzheng Zhao, Kailong Huang, Haijun Ma, Zhu Wang, Lin Ye, and Hongqiang Ren. 2016. ′High Levels of Antibiotic Resistance Genes and Their Correlations with Bacterial Community and Mobile Genetic Elements in Pharmaceutical Wastewater Treatment Bioreactors′, PLoS One, 11: e0156854.
Velkov, Tony, Philip E. Thompson, Roger L. Nation, and Jian Li. 2010. ′Structure−Activity Relationships of Polymyxin Antibiotics′, Journal of Medicinal Chemistry, 53: 1898-1916.
Waseem, Hassan, Maggie R. Williams, Robert D. Stedtfeld, and Syed A. Hashsham. 2017. ′Antimicrobial Resistance in the Environment′, Water Environment Research, 89: 921-941.
Watkinson, A. J., E. J. Murby, and S. D. Costanzo. 2007. ′Removal of antibiotics in conventional and advanced wastewater treatment: Implications for environmental discharge and wastewater recycling′, Water Research, 41: 4164-4176.
Watkinson, A. J., E. J. Murby, D. W. Kolpin, and S. D. Costanzo. 2009. ′The occurrence of antibiotics in an urban watershed: From wastewater to drinking water′, Science of The Total Environment, 407: 2711-2723.
Wright, G. D. 2011. ′Molecular mechanisms of antibiotic resistance′, Chem Commun (Camb), 47: 4055-4061.
Wright, Gerard D. 2010. ′Antibiotic resistance in the environment: a link to the clinic?′, Current Opinion in Microbiology, 13: 589-594.
Xi, C., Y. Zhang, C. F. Marrs, W. Ye, C. Simon, B. Foxman, and J. Nriagu. 2009a. ′Prevalence of antibiotic resistance in drinking water treatment and distribution systems′, Appl Environ Microbiol, 75: 5714-5718.
Xi, Chuanwu, Yongli Zhang, Carl F. Marrs, Wen Ye, Carl Simon, Betsy Foxman, and Jerome Nriagu. 2009b. ′Prevalence of Antibiotic Resistance in Drinking Water Treatment and Distribution Systems′, Applied and Environmental Microbiology, 75: 5714-5718.
Xu, Jian, Yan Xu, Hongmei Wang, Changsheng Guo, Huiyun Qiu, Yan He, Yuan Zhang, Xiaochen Li, and Wei Meng. 2015. ′Occurrence of antibiotics and antibiotic resistance genes in a sewage treatment plant and its effluent-receiving river′, Chemosphere, 119: 1379-1385.
Yan, Muting, Chen Xu, Yumei Huang, Huayue Nie, and Jun Wang. 2018. ′Tetracyclines, sulfonamides and quinolones and their corresponding resistance genes in the Three Gorges Reservoir, China′, Science of The Total Environment, 631-632: 840-848.
Zhang, H., H. He, S. Chen, T. Huang, K. Lu, Z. Zhang, R. Wang, X. Zhang, and H. Li. 2019. ′Abundance of antibiotic resistance genes and their association with bacterial communities in activated sludge of wastewater treatment plants: Geographical distribution and network analysis′, J Environ Sci (China), 82: 24-38.
Zhang, J., M. Chen, Q. Sui, R. Wang, J. Tong, and Y. Wei. 2016. ′Fate of antibiotic resistance genes and its drivers during anaerobic co-digestion of food waste and sewage sludge based on microwave pretreatment′, Bioresour Technol, 217: 28-36.
Zhang, Tong, and Bing Li. 2011. ′Occurrence, Transformation, and Fate of Antibiotics in Municipal Wastewater Treatment Plants′, Critical Reviews in Environmental Science and Technology, 41: 951-998.
Zhang, Xu-Xiang, Tong Zhang, and Herbert H. P. Fang. 2009. ′Antibiotic resistance genes in water environment′, Applied Microbiology and Biotechnology, 82: 397-414.
Zhang, Yan, Aolin Li, Tianjiao Dai, Feifei Li, Hui Xie, Lujun Chen, and Donghui Wen. 2018. ′Cell-free DNA: A Neglected Source for Antibiotic Resistance Genes Spreading from WWTPs′, Environmental Science & Technology, 52: 248-257.
Zhao, Zelong, Jing Wang, Ying Han, Jingwen Chen, Guangfei Liu, Hong Lu, Bin Yan, and Shiaoshing Chen. 2017. ′Nutrients, heavy metals and microbial communities co-driven distribution of antibiotic resistance genes in adjacent environment of mariculture′, Environmental Pollution, 220: 909-918.
Zhou, Yuting, Lili Niu, Siyu Zhu, Huijie Lu, and Weiping Liu. 2017. ′Occurrence, abundance, and distribution of sulfonamide and tetracycline resistance genes in agricultural soils across China′, Science of The Total Environment, 599: 1977-1983.
Zhou, Zhen-Chao, Ji Zheng, Yuan-Yuan Wei, Tao Chen, Randy A. Dahlgren, Xu Shang, and Hong Chen. 2017. ′Antibiotic resistance genes in an urban river as impacted by bacterial community and physicochemical parameters′, Environmental Science and Pollution Research, 24: 23753-23762.
Zhu, Y. G., T. A. Johnson, J. Q. Su, M. Qiao, G. X. Guo, R. D. Stedtfeld, S. A. Hashsham, and J. M. Tiedje. 2013a. ′Diverse and abundant antibiotic resistance genes in Chinese swine farms′, Proc Natl Acad Sci U S A, 110: 3435-3440.
Zhu, Yong-Guan, Timothy A. Johnson, Jian-Qiang Su, Min Qiao, Guang-Xia Guo, Robert D. Stedtfeld, Syed A. Hashsham, and James M. Tiedje. 2013b. ′Diverse and abundant antibiotic resistance genes in Chinese swine farms′, Proceedings of the National Academy of Sciences, 110: 3435-3440.
Zhuang, Yao, Hongqiang Ren, Jinju Geng, Yingying Zhang, Yan Zhang, Lili Ding, and Ke Xu. 2015. ′Inactivation of antibiotic resistance genes in municipal wastewater by chlorination, ultraviolet, and ozonation disinfection′, Environmental Science and Pollution Research, 22: 7037-7044.
鄧教義(2018) 重金屬生物有效性對於抗生素抗性基因在農地土壤的分佈與持續之影響,國立中央大學,桃園縣
指導教授 林居慶(Chu-Ching Lin) 審核日期 2019-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明