博碩士論文 105326006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:3.144.17.112
姓名 史經立(Jing-Li Shih)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 以Desulfitobacterium metallireducens為模式生物探討醱酵菌對汞甲基化之能力與潛勢
(Using Desulfitobacterium metallireducens as the model organism to probe the capacity and potential of mercury methylation in fermenters)
相關論文
★ 埔心溪補助灌溉水水質與渠道底泥重金屬含量調查分析★ 桃園航空城三所國小周界大氣PAHs濃度探討
★ 無塵室揮發性有機氣體異味調查探討 -以某晶圓級封裝廠為例★ 利用土壤植栽與固相微萃取探討植作對非離子態有機污染物之吸收模式
★ 零價鐵與硫酸鹽的添加對於水田根圈環境汞 之生物有效性與菌相組成的影響★ 以紫外光/二氧化鈦光催化降解程序去除水溶液相內分泌干擾物質壬基苯酚之研究
★ 異化性鐵還原狀態下非生物性汞氧化還原 作用及其對地下水水質之影響★ 水溶液相中多壁奈米碳管分散懸浮與抑菌效果之相關性探討
★ 鄰近汞排放源之水稻田受現地地質化學與微生物影響之甲基汞生成與累積作用-以北投垃圾焚化爐為例★ 以淨水污泥灰及廢玻璃為矽鋁源合成MCM-41並應用於重鉻酸鹽吸附之研究
★ 鄰近汞排放源之水稻田受現地地質化學與微生物影響之甲基汞生成與累積作用 -以台中火力發電廠為例★ 細胞固定化影響厭氧氨氧化程序脫氮效能之研究
★ 藉由非抗性模式細菌對鎘之攝取機制探討量子點的生態毒性潛勢★ 利用生物性聚合物交聯所成穿透式網絡結構穩定污染土壤中之重金屬(鉛、鉻、鎘)
★ 蚯蚓處理加速堆肥廚餘去化可行性評估-以臺北市為例★ 氣相層析三段四極柱串聯質譜儀應用於多溴二苯醚環境樣品之分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 汞是具有強烈毒性的微量金屬,且是國際公認需優先管控的全球性污染物。雖然所有的汞物種皆具毒性,但造成最多傷害也最被關注的仍是甲基汞。甲基汞已知主要是由現地環境中的厭氧菌將無機汞攝取進細胞內後轉化生成,但這些可進行汞甲基化作用的菌群中,相較於硫酸鹽還原菌、鐵還原菌與甲烷生成菌,醱酵菌是近期才被確認,因此目前對其如何攝取無機汞、以及甲基化汞的能力為何仍不甚清楚。由於醱酵菌是許多厭氧程序/工法中(如掩埋場、污泥消化、地下水含氯有機溶劑生物復育)的關鍵菌群,因此深入了解此菌群的汞甲基化行為將可更精確的評估特定系統的甲基汞生成與累積潛勢。本研究利用文獻所記載擁有相對較高汞甲基化能力的Desulfitobacterium metallireducens為模式醱酵菌株,藉由調控培養液的組成來了解此菌可能對汞的攝取與甲基化的能力與潛力,過程中也與另一常用且研究較為透徹的鐵還原模式菌株Geobacter sulfurreducens PCA進行比較。研究結果顯示D. metallireducens在有汞-氯/硫化物的環境中其自身汞甲基化能力並不顯著,而即使在有汞-硫醇錯合物(即Hg-cysteine)的狀態下,其汞甲基化的能力表現仍相當有限,皆遠遜於G. sulfurreducens PCA;此外,本研究也對D. metallireducens進行生物性去甲基化之實驗,結果表明此菌有著劇烈的去甲基化作用發生。綜合以上,本研究結果顯示此模式醱酵菌的汞甲基化能力並不出色,且當環境中達一定濃度之甲基汞時則會進行去甲基化,暗示著醱酵菌對於厭氧系統如掩埋場中的汞甲基化生成潛勢增加應不顯著。
摘要(英) Mercury (Hg) is a highly toxic trace element that has been internationally recognized as a global priority pollutant. While all Hg species are toxic, the most harmful and concerned one is methylmercury (MeHg). MeHg is known to be produced in situ by certain anaerobes via a process involving uptake and intracellular methylation of inorganic Hg. Of all the known Hg-methylating microbes, little is understood about how fermentative bacteria carry out this task, compared to other Hg methylators such as sulfate-reducers, iron-reducers, and methanogens. Given that fermenters are key players in anaerobic systems or treatments like landfills, sludge digesters, and bioremediation of chlorinated solvents, it is important to acquire a deeper understanding of Hg methylation processes in such bacteria in order to be able to more accurately predict MeHg impact in a particular system. In this study, Desulfitobacterium metallireducens, which has been reported to have higher Hg methylation capacity than other fermentative bacteria, is used as a model organism, along with another model strain Geobacter sulfurreducens PCA. Results show that D. metallireducens is incomparable with G. sulfurreducens PCA, as it does not exhibit marked Hg methylation in the presence of Hg-chloro or Hg-sulfide complexes, nor in the presence of Hg-thiol complexes (i.e Hg-cysteine). Results of biological Hg demethylation assays also show that this strain has a strong demethylation capacity. Together, these results suggest that potential of MeHg formation and accumulation in systems like landfills may be insubstantial under the condition when fermenters are the dominant microbial guild.
關鍵字(中) ★ 甲基汞生成潛勢
★ 去甲基化
★ 掩埋場
★ 醱酵菌
關鍵字(英) ★ Mercury methylation potential
★ demethylation
★ landfills
★ fermenters
論文目次 目錄
摘要 i
Abstract v
圖目錄 ix
表目錄 xi
第一章 前言 1
1.1研究背景 1
1.2研究目的 3
第二章 文獻回顧 4
2.1環境中汞的傳輸 4
2.2汞對人體的危害 7
2.3垃圾掩埋場的汞污染源 9
2.4原核生物對汞的攝取機制 12
2.5 原核生物的汞還原機制 14
2.6原核生物的汞甲基化機制 16
2.7原核生物對甲基汞的降解機制 18
2.8環境因子與汞的化學組成對微生物行甲基化的影響 19
第三章 研究方法 20
3.1實驗架構 20
3.2實驗器材前處理 21
3.3模式醱酵菌Desulfitobacterium metallireducens與鐵還原菌Geobacter sulfurreducens PCA 22
3.4 培養液配置 23
3.5 細菌生長方法測量 28
3.6 汞甲基化與去甲基化實驗 31
3.7 甲基汞分析 33
3.8 藥品與試劑 34
3.8.1 實驗藥品 34
3.8.2 儀器與設備 35
第四章 結果與討論 36
4.1 細菌生長曲線 36
4.2生物可利用性受汞物種型態之影響 40
4.3硫醇官能基刺激汞甲基化 43
4.4鐵還原菌Geobacter sulfurreducens PCA的甲基化能力 51
4.5 Desulfitobacterium metallireducens的去甲基化能力 56
4.6掩埋場中醱酵菌汞甲基化能力 58
第五章 結論與建議 60
5.1結論 60
5.2建議 62
參考文獻 63
附錄 70
參考文獻 Alberts, James J., James E. Schindler, Richard W. Miller, and Dale E. Nutter. 1974. ′Elemental Mercury Evolution Mediated by Humic Acid′, Science, 184: 895.
Amyot, Marl, Greg Mierle, David Lean, and Donald J. Mc Queen. 1997. ′Effect of solar radiation on the formation of dissolved gaseous mercury in temperate lakes′, Geochimica et Cosmochimica Acta, 61: 975-87.
An, Jing, Lijie Zhang, Xia Lu, Dale A Pelletier, Eric M. Pierce, Alexander Johs, Jerry Parks, and Baohua Gu. 2019. Mercury Uptake by Desulfovibrio desulfuricans ND132: Passive or Active?
An, Jing, Lijie Zhang, Xia Lu, Dale A. Pelletier, Eric M. Pierce, Alexander Johs, Jerry M. Parks, and Baohua Gu. 2019. ′Mercury Uptake by Desulfovibrio desulfuricans ND132: Passive or Active?′, Environmental Science & Technology, 53: 6264-72.
Barkay, T., Ralph Turner, Lasse Rasmussen, Carol Kelly, and John Rudd. 1998. Luminescence Facilitated Detection of Bioavailable Mercury in Natural Waters.
Barkay, Tamar, Susan M. Miller, and Anne O. Summers. 2003. ′Bacterial mercury resistance from atoms to ecosystems′, FEMS Microbiol Rev, 27: 355-84.
Barlaz, Morton, D. M Schaefer, and R. K Ham. 1989. Bacterial Population Development and Chemical Characteristics of Refuse Decomposition in a Simulated Sanitary Landfill.
Bauer, Markus, Tobias Heitmann, Donald L Macalady, and Christian Blodau. 2007. Electron Transfer Capacities and Reaction Kinetics of Peat Dissolved Organic Matter.
Benoit, Janina, Cynthia Gilmour, A. Heyes, Robert Mason, and C. L. Miller. 2003. ′Geochemical and Biological Controls Over Methylmercury Production and Degradation in Aquatic Ecosystems.′ in.
Benoit, Janina, Cynthia Gilmour, and Robert Mason. 2001. The Influence of Sulfide on Solid-Phase Mercury Bioavailability for Methylation by Pure Cultures of Desulfobulbus propionicus (1pr3).
Bravo, Andrea, Jakob Zopfi, Moritz Buck, Jingying Xu, Stefan Bertilsson, Jeffra Schaefer, John Poté, and Claudia Cosio. 2018. Geobacteraceae are important members of mercury-methylating microbial communities of sediments impacted by wastewater releases.
Bridou, Romain, Mathilde Monperrus, Pablo Rodriguez Gonzalez, Rémy Guyoneaud, and David Amouroux. 2011. ′Simultaneous determination of mercury methylation and demethylation capacities of various sulfate-reducing bacteria using species-specific isotopic tracers′, Environmental Toxicology and Chemistry, 30: 337-44.
Cheng, Hefa, and Yuanan Hu. 2012. ′Mercury in Municipal Solid Waste in China and Its Control: A Review′, Environmental Science & Technology, 46: 593-605.
Driscoll, Charles T., Robert P. Mason, Hing Man Chan, Daniel J. Jacob, and Nicola Pirrone. 2013. ′Mercury as a Global Pollutant: Sources, Pathways, and Effects′, Environmental Science & Technology, 47: 4967-83.
Feng, Xinbin, Ping Li, Guangle Qiu, Shaofeng Wang, Guanghui Li, Lihai Shang, Bo Meng, Hongmei Jiang, Weiyang Bai, Zhonggen Li, and Xuewu Fu. 2008. ′Human Exposure To Methylmercury through Rice Intake in Mercury Mining Areas, Guizhou Province, China′, Environmental Science & Technology, 42: 326-32.
Finneran, Kevin, Heather M Forbush, Catherine V Gaw VanPraagh, and Derek R Lovley. 2002. Desulfitobacterium metallireducens sp. nov., an anaerobic bacterium that couples growth to the reduction of metals and humic acids as well as chlorinated compounds.
Fleming, Emily, E. Erin Mack, Peter G Green, and Douglas C Nelson. 2006. Mercury Methylation from Unexpected Sources: Molybdate-Inhibited Freshwater Sediments and an Iron-Reducing Bacterium.
Gilmour, Cynthia C., Elizabeth A. Henry, and Ralph Mitchell. 1992. ′Sulfate stimulation of mercury methylation in freshwater sediments′, Environmental Science & Technology, 26: 2281-87.
Gilmour, Cynthia C., Mircea Podar, Allyson L. Bullock, Andrew M. Graham, Steven D. Brown, Anil C. Somenahally, Alex Johs, Richard A. Hurt, Kathryn L. Bailey, and Dwayne A. Elias. 2013. ′Mercury Methylation by Novel Microorganisms from New Environments′, Environmental Science & Technology, 47: 11810-20.
Han, Fengxiang X., Yi Su, David L. Monts, Charles A. Waggoner, and M. John Plodinec. 2006. ′Binding, distribution, and plant uptake of mercury in a soil from Oak Ridge, Tennessee, USA′, Science of The Total Environment, 368: 753-68.
Hintelmann, Holger, and Reed Harris. 2004. ′Application of multiple stable mercury isotopes to determine the adsorption and desorption dynamics of Hg(II) and MeHg to sediments′, Marine Chemistry, 90: 165-73.
Horowitz, Hannah, Daniel J Jacob, Helen Amos, David G Streets, and Elsie Sunderland. 2014. Historical Mercury Releases from Commercial Products: Global Environmental Implications.
Hower, James C., Constance L. Senior, Eric M. Suuberg, Robert H. Hurt, Jennifer L. Wilcox, and Edwin S. Olson. 2010. ′Mercury capture by native fly ash carbons in coal-fired power plants′, Progress in Energy and Combustion Science, 36: 510-29.
Hu, Haiyan, Hui Lin, Wang Zheng, Stephen J. Tomanicek, Alexander Johs, Xinbin Feng, Dwayne A. Elias, Liyuan Liang, and Baohua Gu. 2013. ′Oxidation and methylation of dissolved elemental mercury by anaerobic bacteria′, Nature Geoscience, 6: 751.
Jay, Jenny Ayla, François M. M. Morel, and Harold F. Hemond. 2000. ′Mercury Speciation in the Presence of Polysulfides′, Environmental Science & Technology, 34: 2196-200.
Jensen, S., and A. JernelÖV. 1969. ′Biological Methylation of Mercury in Aquatic Organisms′, Nature, 223: 753-54.
Kirby, A., I. Rucevska, C. C. YemelinV, and O. Simonett. 2013. ′Mercury–Time to Act′, United Nations Environment Program.
Kudo, A., Y. Fujikawa, S. Miyahara, J. Zheng, H. Takigami, M. Sugahara, and T. Muramatsu. 1998. ′Lessons from Minamata mercury pollution, Japan — After a continuous 22 years of observation′, Water Science and Technology, 38: 187-93.
Lee, Sung-Woo, Gregory V. Lowry, and Heileen Hsu-Kim. 2016. ′Biogeochemical transformations of mercury in solid waste landfills and pathways for release′, Environmental science. Processes & impacts, 18: 176-89.
Lehnherr, Igor, and Vincent L. St. Louis. 2009. ′Importance of Ultraviolet Radiation in the Photodemethylation of Methylmercury in Freshwater Ecosystems′, Environmental Science & Technology, 43: 5692-98.
Lin, Chu-Ching, Nathan Yee, and Tamar Barkay. 2011. ′Microbial Transformations in the Mercury Cycle.′ in.
Liu, Yu-Rong, Xia Lu, Linduo Zhao, Jing An, Ji-Zheng He, Eric M. Pierce, Alexander Johs, and Baohua Gu. 2016. ′Effects of Cellular Sorption on Mercury Bioavailability and Methylmercury Production by Desulfovibrio desulfuricans ND132′, Environmental Science & Technology, 50: 13335-41.
Lloyd, Jonathan R. 2003. ′Microbial reduction of metals and radionuclides′, FEMS Microbiol Rev, 27: 411-25.
Lu, Xia, Yu-Rong Liu, Alexander Johs, Linduo Zhao, T. s Wang, Ziming Yang, Hui Lin, Dwayne Elias, Eric Pierce, Liyuan Liang, T. Barkay, and Baohua Gu. 2016. Anaerobic Mercury Methylation and Demethylation by Geobacter bemidjiensis Bem.
Marvin-DiPasquale, Mark C., and Ronald S. Oremland. 1998. ′Bacterial Methylmercury Degradation in Florida Everglades Peat Sediment′, Environmental Science & Technology, 32: 2556-63.
Mason, Robert, W. F. Fitzgerald, and F. M. M. and Morel. 1994. The biogeochemical cycling of elemental mercury: Anthropogenic influences.
Mason, Robert P., Anna L. Choi, William F. Fitzgerald, Chad R. Hammerschmidt, Carl H. Lamborg, Anne L. Soerensen, and Elsie M. Sunderland. 2012. ′Mercury biogeochemical cycling in the ocean and policy implications′, Environmental Research, 119: 101-17.
Mason, Robert, John Reinfelder, and F. M. M. Morel. 1995. Bioaccumulation of Mercury and Methylmercury.
Matthiessen, A. 1998. ′Reduction of divalent mercury by humic substances — kinetic and quantitative aspects′, Science of The Total Environment, 213: 177-83.
Muyzer, Gerard, and Alfons J M Stams. 2008. Muyzer G, Stams AJM.. The ecology and biotechnology of sulphate-reducing bacteria. Nat Rev Microbiol 6: 441-454.
Nealson, Kenneth, and Charles Myers. 1992. Microbial reduction of manganese and iron: New approaches to carbon cycling.
Obrist, D., D. W. Johnson, S. E. Lindberg, Y. Luo, O. Hararuk, R. Bracho, J. J. Battles, D. B. Dail, R. L. Edmonds, R. K. Monson, S. V. Ollinger, S. G. Pallardy, K. S. Pregitzer, and D. E. Todd. 2011. ′Mercury Distribution Across 14 U.S. Forests. Part I: Spatial Patterns of Concentrations in Biomass, Litter, and Soils′, Environmental Science & Technology, 45: 3974-81.
Oremland, R. S., C. W. Culbertson, and M. R. Winfrey. 1991. ′Methylmercury decomposition in sediments and bacterial cultures: involvement of methanogens and sulfate reducers in oxidative demethylation′, Applied and environmental microbiology, 57: 130-37.
Organization, W. H. 1990. ′IPCS environmental health criteria 101: methylmercury. International programme of chemical safety′, World Health Organization, Geneva, Switzerland.
Pacyna, E. G., J. M. Pacyna, K. Sundseth, J. Munthe, K. Kindbom, S. Wilson, F. Steenhuisen, and P. Maxson. 2010. ′Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020′, Atmospheric Environment, 44: 2487-99.
Parks, Jerry, Alexander Johs, Mircea Podar, Romain Bridou, Richard A Hurt, Steve Smith, Stephen Tomanicek, Yun Qian, Steven D Brown, Craig Brandt, Anthony Palumbo, Jeremy Smith, Judy Wall, Dwayne Elias, and Liyuan Liang. 2013. The Genetic Basis for Bacterial Mercury Methylation.
Poulain, Alexandre, and Tamar Barkay. 2013. Cracking the Mercury Methylation Code.
R. Lovley, Derek, Kazem Kashefi, Madeline Vargas, Jason Tor, and Elizabeth L. Blunt-Harris. 2000. Reduction of humic substances and Fe(III) by hyperthermophilic microorganisms.
Rothenberg, Sarah E., Richard F. Ambrose, and Jennifer A. Jay. 2008. ′Mercury cycling in surface water, pore water and sediments of Mugu Lagoon, CA, USA′, Environmental Pollution, 154: 32-45.
Schaefer, Jeffra K., and François M. M. Morel. 2009. ′High methylation rates of mercury bound to cysteine by Geobacter sulfurreducens′, Nature Geoscience, 2: 123.
Schaefer, Jeffra K., Sara S. Rocks, Wang Zheng, Liyuan Liang, Baohua Gu, and François M. M. Morel. 2011. ′Active transport, substrate specificity, and methylation of Hg(II) in anaerobic bacteria′, Proceedings of the National Academy of Sciences, 108: 8714-19.
Smith-Downey, Nicole V., Elsie M. Sunderland, and Daniel J. Jacob. 2010. ′Anthropogenic impacts on global storage and emissions of mercury from terrestrial soils: Insights from a new global model′, Journal of Geophysical Research: Biogeosciences, 115.
Staley, Bryan, and Morton Barlaz. 2009. Composition of Municipal Solid Waste in the United States and Implications for Carbon Sequestration and Methane Yield.
Stein, Eric, Yoram Cohen, and Arthur Winer. 2009. Environmental Distribution and Transformation of Mercury compounds.
Szczuka, Aleksandra, François M. M. Morel, and Jeffra K. Schaefer. 2015. ′Effect of Thiols, Zinc, and Redox Conditions on Hg Uptake in Shewanella oneidensis′, Environmental Science & Technology, 49: 7432-38.
Wang, Yanping, Zachary Freedman, Patricia Lu-Irving, Rachel Kaletsky, and Tamar Barkay. 2009. An initial characterization of the mercury resistance (mer) system of the thermophilic bacterium Thermus thermophilus HB27.
Whalin, Lindsay, Eun-Hee Kim, and Robert Mason. 2007. ′Factors influencing the oxidation, reduction, methylation and demethylation of mercury species in coastal waters′, Marine Chemistry, 107: 278-94.
Wiatrowski, Heather A., Paula Marie Ward, and Tamar Barkay. 2006. ′Novel Reduction of Mercury(II) by Mercury-Sensitive Dissimilatory Metal Reducing Bacteria′, Environmental Science & Technology, 40: 6690-96.
Yorifuji, Takashi, Toshihide Tsuda, Sachiko Inoue, Soshi Takao, and Masazumi Harada. 2011. ′Long-term exposure to methylmercury and psychiatric symptoms in residents of Minamata, Japan′, Environment International, 37: 907-13.
Yu, Ri-Qing, Isaac Adatto, Mario R. Montesdeoca, Charles T. Driscoll, Mark E. Hines, and Tamar Barkay. 2010. ′Mercury methylation in Sphagnum moss mats and its association with sulfate-reducing bacteria in an acidic Adirondack forest lake wetland′, FEMS Microbiology Ecology, 74: 655-68.
Yu, Ri-Qing, John Reinfelder, Mark Hines, and Tamar Barkay. 2018. Syntrophic pathways for microbial mercury methylation.
Zhang, Hong. 2005. ′Photochemical Redox Reactions of Mercury.′ in.
Zhang, Leiming, L. Paige Wright, and Pierrette Blanchard. 2009. ′A review of current knowledge concerning dry deposition of atmospheric mercury′, Atmospheric Environment, 43: 5853-64.
Zhang, Tong, and Heileen Hsu-Kim. 2010. Photolytic degradation of methylmercury enhanced by binding to natural organic ligands.
徐志昆. 2014. ′掩埋場滲出水環境之汞甲基化潛勢探討 ′.
指導教授 林居慶(Chu-Ching Lin) 審核日期 2019-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明