博碩士論文 105326019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:46 、訪客IP:3.145.188.16
姓名 翁子芩(ZIH CHIN-WENG)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 2017年臺灣 年臺灣 六個城市 六個城市 PM2.5金屬元素污染 金屬元素污染 來源推估 來源推估 研
相關論文
★ 台灣北部地區大氣氣膠有機酸特性★ 北部氣膠超級測站近七年氣膠特性變化探討
★ 鹿林山背景大氣及受生質燃燒事件影響的氣膠化學特性★ 鹿林山大氣氣膠含水量探討及乾氣膠光學特性
★ 中南半島近污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性★ 鹿林山大氣背景站不同氣團氣膠光學特性
★ 台灣細懸浮微粒(PM2.5)空氣品質標準建置研究★ 台灣都市地區細懸浮微粒(PM2.5)手動採樣分析探討
★ 2011年不同來源氣團鹿林山氣膠水溶性無機離子動態變化★ 台灣都會區細懸浮微粒(PM2.5)濃度變化影響因子、污染來源及其對大氣能見度影響
★ 2012年越南山羅高地生質燃燒期間氣膠特性及2003-2012年台灣鹿林山氣膠來源解析★ 2011年生質燃燒期間越南山羅高地和台灣鹿林山氣膠特性
★ 2013年7SEAS國際觀測對北越南山羅生質燃燒期間氣膠化學特性及來源鑑定★ 中南半島近生質燃燒源區與傳輸下風鹿林山氣膠特性及來源解析
★ 台灣北、中′南部細懸浮微粒(PM2.5)儀器比對成分分析與來源推估★ 2013年春季鹿林山和夏季龍潭氣膠水溶性離子短時間動態變化特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 氣膠金屬元素常可作為污染源排放的指標成分,本文使用2017年「細懸浮微粒(PM2.5)化學成分監測及分析計畫」的數據,探討台灣北(板橋)、中(忠明)、南(斗六、嘉義、小港)、東(花蓮)六個測站的PM2.5質量濃度和金屬元素成分濃度的時間變化並推論污染來源。研究中先以金屬元素富集因子(Enrichment Factor, EF)結合金屬元素判定係數,簡略推論污染來源;接著以金屬元素比值、鑭系元素三角圖、雙變量條件機率函數(Conditional Bivariate Probability Function, CBPF),推估煉油廠、燃油燃燒、交通排放和船舶污染的污染事件。然後以正矩陣因子法(Positive Matrix Factorization, PMF)和條件機率函數(Conditional Probability Function, CPF)定量推估污染來源,最後並綜合彙整各推論方法的異同。
結果顯示, PM2.5質量濃度由高而低依序為小港站>斗六站>嘉義站>忠明站>板橋站>花蓮站,總金屬元素濃度高低順序也是大略如此。六站都以Na、K、Fe、Ca、Al、Mg、Zn為高濃度元素,嘉義站的Pb、Ba、Ga和小港站的Na、Fe、Al、Mg、Zn濃度在四季都是六站最高;斗六站和嘉義站共通的金屬元素眾多,Tl、Rb和Cs在忠明站、斗六站和嘉義站的空間分布具有同源性。
各站都明顯受到來自交通排放源的影響,板橋、斗六、小港、花蓮站還受到燃油燃燒源的影響。小港站南方及東南方明顯受到煉油廠排放影響,發生煉油廠事件時La/PM2.5占比明顯升高,SO2小時值也會有明顯的高濃度。小港站及花蓮站當風向來自港口,明顯受到船舶污染排放影響,發生船舶事件的日平均風速高,V/Ni和La/Ce元素比值符合船舶污染範圍,SO2濃度隨而上升的次數多,峰值也較明顯。
彙整金屬元素判定係數、金屬元素比值、PMF三種推估方法結果顯示,六站普遍受到交通排放、礦物工業和生質燃燒影響,板橋站、忠明站、嘉義站和小港站的鋼鐵工業排放明顯,斗六站和花蓮站受到燃煤燃燒和燃煤發電廠影響,忠明站、嘉義站、小港站和花蓮站則受到燃油燃燒影響。
摘要(英) Aerosol metal elements frequently act as tracers in source identification. The study uses the data of “PM2.5 chemical composition monitoring and analysis study” in 2017 to investigate the variations of PM2.5 mass concentration, metal element compositions at the six stations of Banqiao (BQ), Zhongming (ZM), Douliu (DL), Chiayi (CY), Xiaogang (XG), and Hualien (HL). Enrichment factor (EF) coupling with the coefficient of determination between pairs of the metal elements was first adopted to infer source contributions. Secondly, the ratios of the selected metal elements, lanthanoid triangular plots, and Conditional Bivariate Probability Function (CBPF) were for the inferences on the contributions from the refinery, fuel burning, traffic emissions, and ship emissions. Thirdly, Positive Matrix Factorization (PMF) combining with Conditional Probability Function (CPF) was used to quantify source contributions.
The results showed that PM2.5 mass concentrations of the monitoring stations varied from high to low in the order of XG > DL > CY > ZM > BQ >HL. The high to low order of the total metal element concentrations were roughly the same. The dominant metal elements in mass concentration are Na, K, Fe, Ca, Al, Mg, and Zn. The average concentrations of Pb, Ba, and Ga at the CY station and Na, Fe, Al, Mg, and Zn at the XG stations were the highest of each element in the six stations. In terms of spatial source distribution, the metal elements with similar contributing sources for DL and CY stations were the most in the six stations. The metal elements of Tl, Rb, and Cs were with similar contributing sources at the ZM, DL, and CY stations.
All stations were obviously under the influences of winds from traffic emissions. The BQ, DL, XG, and HL stations were additionally subject to the influences of fuel oil burning. As for the influence from oil refinery emissions, the south and southeast winds to the XG station were responsible for it. The daily average of La/PM2.5 ratio increased much when affected by oil refinery emissions. Meanwhile, the hourly values of SO2 also went high. Since the XG and HL stations near a harbor, ship emissions affect them significantly when the winds coming from the harbor. The metal elemental ratios of V/Ni and La/Ce were in the ranges of ship emission characteristics, and SO2 concentration rose accordingly with evident peak values when under the influence of ship emissions.
In summarizing the results from the methods of determination coefficient, the metal elemental ratio, and PMF source apportionment, all the six stations were significantly affected by traffic emissions, mineral industry, and biomass burning. In particular, the steel industry influenced the BQ, ZM, CY, and XG stations evidently. The DL and HL stations were under the influences of coal combustion and coal-fired power plants, while the ZM, CY, XG and HL stations were subject to the influences of fuel oil combustions.
關鍵字(中) ★ 細懸浮微粒(PM2.5)
★ PM2.5質量濃度
★ PM2.5金屬元素成分
★ 金屬元素比值
★ 金屬元素污染來源推論
關鍵字(英) ★ PM2.5
★ PM2.5 mass concentrations,
★ PM2.5 metal elements
★ metal elements ratio
★ source inferences of metal elements
論文目次 目錄
摘要 I
Abstract II
目錄 V
圖目錄 IX
表目錄 XI
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 細懸浮微粒 (PM2.5)的重要性 3
2.1.1 PM2.5對於環境的影響 3
2.1.2 PM2.5對於人體的影響 3
2.2 PM2.5形成機制 4
2.3 PM2.5組成來源 5
2.3.1 PM2.5水溶性離子 5
2.3.2 PM2.5碳成分 6
2.3.3 PM2.5金屬元素 7
2.4 金屬元素比值污染來源推估 9
2.5 台灣PM2.5時間與空間濃度分佈特性 18
2.6 受體模式正矩陣因子法 (PMF) 20
2.7 雙變量條件機率函數 (CBPF) 21
2.8 氣膠物種光譜輻射傳輸模型 (SPRINTARS) 22
第三章 研究方法 24
3.1 研究架構 24
3.2 採樣時間與地點 25
3.2.1 採樣地點概述 26
3.2.2 採樣時間 27
3.3 PM2.5手動採樣儀器 27
3.3.1 MetOne SASS PM2.5成分濃度採樣儀器 27
3.3.2 MetOne E-FRM PM2.5質量濃度採樣器 28
3.4 PM2.5質量濃度和化學成分分析方法 29
3.4.1 採樣濾紙前處理 29
3.4.2 質量濃度秤重之分析 30
3.4.3 水溶性離子分析方法 31
3.4.4 氣膠金屬元素成分檢驗分析方法 31
3.5 正矩陣因子法PMF (Positive Matrix Factorization) 38
3.5.1 輸入資料處理 39
3.5.2 PMF操作流程 39
3.6 條件機率函數CPF(Conditional probability function)推估方法 43
3.7 雙變量條件機率函數CBPF(Conditional bivariate probability function) 44
3.8 風速風向濃度散布圖 44
3.9 富集因子方法EF (Enrichment Factor) 45
3.10發散係數分析CD (Coefficient of divergence) 45
第四章 結果與討論 47
4.1 PM2.5和金屬元素濃度變化趨勢 47
4.1.1 PM2.5和金屬元素濃度時間變化 47
4.1.2 PM2.5和金屬元素濃度及空間季節變化 52
4.1.3 金屬元素濃度判定係數和發散係數分析CD (Coefficient of Divergence) 59
4.2 金屬元素EF值和金屬元素判定係數推估污染來源 63
4.2.1 金屬元素EF值 63
4.2.2 金屬元素判定係數 66
4.2.3 各站EF值>10金屬元素及判定係數探討 78
4.3 各站特定金屬元素比值及污染來源推估 78
4.4 鑭系金屬元素與V推估煉油廠來源貢獻 84
4.4.1 板橋站 85
4.4.2 忠明站 88
4.4.3 斗六站 90
4.4.4 嘉義站 93
4.4.5 小港站 95
4.4.6 花蓮站 98
4.5 污染來源事件推估 101
4.5.1 煉油廠事件日 101
4.5.2 燃油燃燒及交通污染 105
4.5.3 船舶污染推估 113
4.6 PMF受體模式推估PM2.5污染來源 121
4.6.1 板橋站污染來源推估 122
4.6.2 忠明站污染來源推估 127
4.6.3 斗六站污染來源推估 132
4.6.4 嘉義站污染來源推估 137
4.6.5 小港站污染來源推估 142
4.6.6 花蓮站污染來源推估 147
4.6.7 各站PMF推估因子貢獻比例 152
4.7 各站污染來源推估彙整及方法比較 152
第五章 結論與建議 156
5.1結論 156
5.2建議 157
第六章 參考文獻 158
附錄一 2017年各測站整年及季節風花圖 188
附錄二 2017年各測站PM2.5和氣體污染物CBPF 194
附錄三 PM2.5和氣體污染物CBPF污染區間明顯方向的工業來源 200
附錄四 六站金屬元素風向風速濃散布圖 202
附錄五 非船舶事件氣象因子 222
附錄六 風場模擬圖 226
附錄七 測站地圖 227
附錄八 PMF受體模式檢測結果 230
附錄九 台灣周遭船舶地圖 231
附錄十 台灣兩大水泥公司年產量 231
附錄十一 各站金屬元素成分占比(PM2.5及總金屬元素) 232
附錄十二 口試委員意見答覆 244


圖目錄
圖3.1.1研究架構圖 24
圖3.2.1採樣地點板橋、忠明、斗六、嘉義、小港、花蓮地理位置 25
圖3.3.1 MetOne SASS PM2.5採樣儀器採樣配置 28
圖3.3.2 MetOne E-FRM PM2.5採樣器內部構造示意圖 29
圖3.5.1美國環保署 PMF 5.0版操作流程 40
圖3.5.2使用轉軸工具修正結果操作流程 40
圖3.5.3使用限制(constraint)工具修正結果操作流程 41
圖4.1.1板橋站金屬元素濃度和PM2.5質量濃度時間變化圖 49
圖4.1.2忠明站金屬元素濃度和PM2.5質量濃度時間變化圖 49
圖4.1.3斗六站金屬元素濃度和PM2.5質量濃度時間變化圖 50
圖4.1.4嘉義站金屬元素濃度和PM2.5質量濃度時間變化圖 50
圖4.1.5小港站金屬元素濃度和PM2.5質量濃度時間變化圖 51
圖4.1.6花蓮站金屬元素濃度和PM2.5質量濃度時間變化圖 51
圖4.1.7各站金屬元素總濃度和PM2.5質量濃度判定係數 52
圖4.2.1板橋站PM2.5金屬元素EF值 64
圖4.2.2忠明站PM2.5金屬元素EF值 64
圖4.2.3斗六站PM2.5金屬元素EF值 65
圖4.2.4嘉義站PM2.5金屬元素EF值 65
圖4.2.5小港站PM2.5金屬元素EF值 65
圖4.2.6花蓮站PM2.5金屬元素EF值 65
圖4.4.1板橋站La, Ce, Sm 三角圖 87
圖4.4.2板橋站La/Sm vs La/Ce散布圖 87
圖4.4.3板橋站La, Ce, V 三角圖 88
圖4.4.4忠明站La, Ce, Sm 三角圖 89
圖4.4.5忠明站La/Sm vs La/Ce散布圖 90
圖4.4.6忠明站La, Ce, V 三角圖 90
圖4.4.7斗六站La, Ce, Sm 三角圖 92
圖4.4.8斗六站La/Sm vs La/Ce散布圖 92
圖4.4.9斗六站La, Ce, V 三角圖 93
圖4.4.10嘉義站La, Ce, Sm 三角圖 94
圖4.4.11嘉義站La/Sm vs La/Ce散布圖 95
圖4.4.12嘉義站La, Ce, V 三角圖 95
圖4.4.13小港站La, Ce, Sm 三角圖 97
圖4.4.14小港站La/Sm vs La/Ce散布圖 98
圖4.4.15小港站La, Ce, V 三角圖 98
圖4.4.16花蓮站La, Ce, Sm 三角圖 100
圖4.4.17花蓮站La/Sm vs La/Ce散布圖 100
圖4.4.18花蓮站La, Ce, V 三角圖 101
圖4.5.1小港站La/PM2.5高占比事件日氣象因子 104
圖4.5.2花蓮站La/PM2.5高占比事件日氣象因子 104
圖4.5.3板橋站受基隆港船舶排放影響日空氣品質及風速 119
圖4.5.4板橋站受台北港船舶排放影響日空氣品質及風速 119
圖4.5.5小港站受高雄港船舶排放影響日空氣品質及風速 120
圖4.5.6花蓮站東北東風受花蓮港船舶排放影響日空氣品質及風速 120
圖4.5.7花蓮站東風受花蓮港船舶排放影響日空氣品質及風速 121
圖4.6.1板橋站PMF解析因子數與Qtrue / Qexp值關係 122
圖4.6.2板橋站PM2.5觀測濃度和PMF模式模擬濃度關係(n=61) 122
圖4.6.3板橋站PMF解析因子指紋 123
圖4.6.4板橋站CPF推估高貢獻污染源來源 126
圖4.6.5忠明站PMF解析因子數與Qtrue / Qexp值關係 127
圖4.6.6忠明站PM2.5觀測濃度和PMF模式模擬濃度關係(n=61) 127
圖4.6.7忠明站PMF解析因子指紋 128
圖4.6.8忠明站CPF推估高貢獻污染源來源 131
圖4.6.9斗六站PMF解析因子數與Qtrue / Qexp值關係 132
圖4.6.10斗六站PM2.5觀測濃度和PMF模式模擬濃度關係(n=61) 132
圖4.6.11斗六站PMF解析因子指紋 133
圖4.6.12斗六站CPF推估高貢獻污染源來源 136
圖4.6.13嘉義站PMF解析因子數與Qtrue / Qexp值關係 137
圖4.6.14嘉義站PM2.5觀測濃度和PMF模式模擬濃度關係(n=60) 137
圖4.6.15嘉義站PMF解析因子指紋 138
圖4.6.16嘉義站CPF推估高貢獻污染源來源 141
圖4.6.17小港站PMF解析因子數與Qtrue / Qexp值關係 142
圖4.6.18小港站PM2.5觀測濃度和PMF模式模擬濃度關係(n=61) 142
圖4.6.19小港站PMF解析因子指紋 143
圖4.6.20小港站CPF推估高貢獻污染源來源 146
圖4.6.21花蓮站PMF解析因子數與Qtrue / Qexp值關係 147
圖4.6.22花蓮站PM2.5觀測濃度和PMF模式模擬濃度關係(n=61) 147
圖4.6.23花蓮站PMF解析因子指紋 148
圖4.6.24花蓮站CPF推估高貢獻污染來源 151


表目錄
表2.3.1 OC/EC與char-EC/soot-EC比值關係 7
表2.3.2金屬元素污染來源及排放指標元素 10
表2.4.1金屬元素比值文獻 10
表3.2.1本文樣本採集季節 27
表3.4.1水溶性離子偵測極限 31
表3.4.2濾紙樣本第一階段微波消化升溫設定條件 33
表3.4.3濾紙樣本第二階段微波消化升溫設定條件 33
表3.4.4感應耦合電漿質譜儀分析設定參數 34
表3.4.5各站低於方法偵測極限(MDL)筆數及百分比 35
表3.4.6 PM2.5金屬元素成分資料準確度與精密度 (李等,2016) 37
表3.5.1 PMF濃度矩陣及微粒成分分析不確定矩陣計算方法 39
表4.1.1 53
表4.1.1 PM2.5及總金屬元素的季節變化 54
表4.1.2冬季各站金屬元素成分濃度 55
表4.1.3春季各站金屬元素成分濃度 56
表4.1.4夏季各站金屬元素成分濃度 57
表4.1.5秋季各站金屬元素成分濃度 58
表4.1.6 2017年各站金屬元素濃度判定係數變化 62
表4.1.7 2017年金屬元素濃度CD值變化(林,2019) 63
表4.2.8各站污染來源整理 67
表4.2.1金屬元素文獻 68
表4.2.2板橋站PM2.5金屬元素濃度之間的判定係數(R2) 72
表4.2.3忠明站PM2.5金屬元素濃度之間的判定係數(R2) 73
表4.2.4斗六站PM2.5金屬元素濃度之間的判定係數(R2) 74
表4.2.5嘉義站PM2.5金屬元素濃度之間的判定係數(R2) 75
表4.2.6小港站PM2.5金屬元素濃度之間的判定係數(R2) 76
表4.2.7花蓮站PM2.5金屬元素濃度之間的判定係數(R2) 77
表4.3.1各站特定金屬元素比值和可能污染來源 80
表4.3.2金屬元素比值文獻 81
表4.3.3金屬元素比值文獻 82
表4.3.4各站金屬元素比值 83
表4.4.1鑭系金屬元素比值及各種污染來源 85
表4.4.2板橋站La/Ce、La/Sm、La/V比值整年及季節變化 86
表4.4.3忠明站La/Ce、La/Sm、La/V比值整年及季節變化 89
表4.4.4斗六站La/Ce、La/Sm、La/V比值整年及季節變化 91
表4.4.5嘉義站La/Ce、La/Sm、La/V比值整年及季節變化 94
表4.4.6小港站La/Ce、La/Sm、La/V比值整年及季節變化 97
表4.4.7花蓮站La/Ce、La/Sm、La/V比值整年及季節變化 99
表4.5.1各站La/PM2.5高占比日期 101
表4.5.2各站煉油廠事件日PM2.5金屬元素成分(metal/PM2.5)占比變化、氣體濃度差異、金屬元素比值與可能污染傳輸方向 103
表4.5.3各站燃油燃燒和交通排放污染來源風向的金屬元素比值 108
表4.5.4各項污染來源金屬元素比值及相關文獻 109
表4.5.5板橋站各風向金屬元素比值、水溶性比值與氣體濃度差異 110
表4.5.6忠明站各風向金屬元素比值、水溶性比值與氣體濃度差異 110
表4.5.7斗六站各風向金屬元素比值、水溶性比值與氣體濃度差異 111
表4.5.8嘉義站各風向金屬元素比值、水溶性比值與氣體濃度差異 111
表4.5.9小港站各風向金屬元素比值、水溶性比值與氣體濃度差異 112
表4.5.10花蓮站各風向金屬元素比值、水溶性比值與氣體濃度差異 112
表4.5.11各站可能接收到船舶污染的風向 116
表4.5.12板橋站來自港口風向受到船舶污染日及一般日各項因子比較 117
表4.5.13忠明站來自港口風向受到船舶污染日及一般日各項因子比較 117
表4.5.14斗六站來自港口風向受到船舶污染日及一般日各項因子比較 117
表4.5.15嘉義站來自港口風向受到船舶污染日及一般日各項因子比較 117
表4.5.16小港站來自港口風向受到船舶污染日及一般日各項因子比較 118
表4.5.17花蓮站來自港口風向受到船舶污染日及一般日各項因子比較 118
表4.6.1板橋站各因子季節貢獻占比 125
表4.6.2忠明站各因子季節貢獻占比 130
表4.6.3斗六站各因子季節貢獻占比 135
表4.6.4嘉義站各因子季節貢獻占比 140
表4.6.5小港站各因子季節貢獻占比 145
表4.6.6花蓮站各因子季節貢獻占比 150
表4.6.7各站PMF推估污染來源因子比例 152
表4.7.1污染來源推估結果彙整 154
表4.7.2適合台灣的金屬元素比值文獻彙整 155
參考文獻 第六章 參考文獻
Agency, E.E., 2013. The impact of international shipping on European air quality and climate forcing. Publications Office of the European Union.
Agrawal, H., Welch, W.A., Miller, J.W., Cocker, D.R., 2008. Emission measurements from a crude oil tanker at sea. Environmental science & technology 42, 7098-7103.
Allen, J.O., Mayo, P.R., Hughes, L.S., Salmon, L.G., Cass, G.R., 2001. Emissions of size-segregated aerosols from on-road vehicles in the Caldecott Tunnel. Environmental Science & Technology 35, 4189-4197.
Amato, F., Alastuey, A., Karanasiou, A., Lucarelli, F., Nava, S., Calzolai, G., Severi, M., Becagli, S., Gianelle, V.L., Colombi, C., 2016. AIRUSE-LIFE+: a harmonized PM speciation and source apportionment in five southern European cities. Atmospheric Chemistry and Physics 16, 3289-3309.
Amato, F., Pandolfi, M., Escrig, A., Querol, X., Alastuey, A., Pey, J., Perez, N., Hopke, P., 2009. Quantifying road dust resuspension in urban environment by multilinear engine: a comparison with PMF2. Atmospheric Environment 43, 2770-2780.
Amodio, M., Andriani, E., Dambruoso, P., de Gennaro, G., Di Gilio, A., Intini, M., Palmisani, J., Tutino, M., 2013. A monitoring strategy to assess the fugitive emission from a steel plant. Atmospheric environment 79, 455-461.
Andreae, M.O., Crutzen, P.J., 1997. Atmospheric aerosols: Biogeochemical sources and role in atmospheric chemistry. Science 276, 1052-1058.
Ashbaugh, L.L., Malm, W.C., Sadeh, W.Z., 1985. A residence time probability analysis of sulfur concentrations at Grand Canyon National Park. Atmospheric Environment (1967) 19, 1263-1270.
Aubert, D., Stille, P., Probst, A., 2001. REE fractionation during granite weathering and removal by waters and suspended loads: Sr and Nd isotopic evidence. Geochimica et Cosmochimica Acta 65, 387-406.
Ayrault, S., Senhou, A., Moskura, M., Gaudry, A., 2010. Atmospheric trace element concentrations in total suspended particles near Paris, France. Atmospheric Environment 44, 3700-3707.
Bari, M.A., Kindzierski, W.B., 2017. Concentrations, sources and human health risk of inhalation exposure to air toxics in Edmonton, Canada. Chemosphere 173, 160-171.
Barwise, A., 1990. Role of nickel and vanadium in petroleum classification. Energy & Fuels 4, 647-652.
Bell, M.L., Ebisu, K., Peng, R.D., Samet, J.M., Dominici, F., 2009. Hospital admissions and chemical composition of fine particle air pollution. American journal of respiratory and critical care medicine 179, 1115-1120.
Bergstrom, R.W., Pilewskie, P., Russell, P.B., Redemann, J., Bond, T.C., Quinn, P.K., Sierau, B., 2007. Spectral absorption properties of atmospheric aerosols. Atmospheric Chemistry and Physics 7, 5937-5943.
Bigi, A., Bianchi, F., De Gennaro, G., Di Gilio, A., Fermo, P., Ghermandi, G., Prévôt, A.S.H., Urbani, M., Valli, G., Vecchi, R., Piazzalunga, A., 2017. Hourly composition of gas and particle phase pollutants at a central urban background site in Milan, Italy. Atmospheric Research 186, 83-94.
Borai, E., El-Sofany, E., Abdel-Halim, A., Soliman, A., 2002. Speciation of hexavalent chromium in atmospheric particulate samples by selective extraction and ion chromatographic determination. TrAC Trends in Analytical Chemistry 21, 741-745.
Bosco, M., Varrica, D., Dongarra, G., 2005. Case study: inorganic pollutants associated with particulate matter from an area near a petrochemical plant. Environmental Research 99, 18-30.
Bowen, H., 1956. Strontium and barium in sea water and marine organisms. Journal of the Marine Biological Association of the United Kingdom 35, 451-460.
Brauer, M., Amann, M., Burnett, R.T., Cohen, A., Dentener, F., Ezzati, M., Henderson, S.B., Krzyzanowski, M., Martin, R.V., Van Dingenen, R., 2012. Exposure assessment for estimation of the global burden of disease attributable to outdoor air pollution. Environmental science & technology 46, 652-660.
Brito, J., Rizzo, L.V., Herckes, P., Vasconcellos, P.d.C., Caumo, S.E.d.S., Fornaro, A., Ynoue, R.Y., Artaxo, P., Andrade, M.F., 2013. Physical–chemical characterisation of the particulate matter inside two road tunnels in the São Paulo Metropolitan Area. Atmospheric Chemistry and Physics 13, 12199-12213.
Buzcu, B., Fraser, M.P., Kulkarni, P., Chellam, S., 2003. Source identification and apportionment of fine particulate matter in Houston, TX, using positive matrix factorization. Environmental Engineering Science 20, 533-545.
Calvo, A., Martins, V., Nunes, T., Duarte, M., Hillamo, R., Teinilä, K., Pont, V., Castro, A., Fraile, R., Tarelho, L., 2015. Residential wood combustion in two domestic devices: Relationship of different parameters throughout the combustion cycle. Atmospheric Environment 116, 72-82.
Cao, J., Wu, F., Chow, J., Lee, S., Li, Y., Chen, S., An, Z., Fung, K., Watson, J., Zhu, C., 2005. Characterization and source apportionment of atmospheric organic and elemental carbon during fall and winter of 2003 in Xi′an, China. Atmospheric Chemistry and Physics 5, 3127-3137.
Carlsten, C., Blomberg, A., Pui, M., Sandstrom, T., Wong, S.W., Alexis, N., Hirota, J., 2015. Diesel exhaust augments allergen-induced lower airway inflammation in allergic individuals: a controlled human exposure study. Thorax, thoraxjnl-2015-207399.
Carpenter, J.H., 1957. The Determination of Calcium in Natural Waters1. Limnology and Oceanography 2, 271-280.
Carslaw, D., 2015. The openair manual–open-source tools for analysing air pollution data. Manual for version 1.1–4, King′s College London.
Carslaw, D.C., 2005. Evidence of an increasing NO2/NOx emissions ratio from road traffic emissions. Atmospheric Environment 39, 4793-4802.
Carslaw, D.C., Beevers, S.D., 2013. Characterising and understanding emission sources using bivariate polar plots and k-means clustering. Environmental modelling & software 40, 325-329.
Carslaw, D.C., Beevers, S.D., Ropkins, K., Bell, M.C., 2006. Detecting and quantifying aircraft and other on-airport contributions to ambient nitrogen oxides in the vicinity of a large international airport. Atmospheric Environment 40, 5424-5434.
Carslaw, D.C., Farren, N.J., Vaughan, A.R., Drysdale, W.S., Young, S., Lee, J.D., 2019. The diminishing importance of nitrogen dioxide emissions from road vehicle exhaust. Atmospheric Environment: X 1, 100002.
Cartledge, B.T., Majestic, B.J., 2015. Metal concentrations and soluble iron speciation in fine particulate matter from light rail activity in the Denver-Metropolitan area. Atmospheric Pollution Research 6, 495-502.
Celo, V., Dabek-Zlotorzynska, E., McCurdy, M., 2015. Chemical characterization of exhaust emissions from selected Canadian marine vessels: the case of trace metals and lanthanoids. Environmental Science & Technology 49, 5220-5226.
Celo, V., Dabek-Zlotorzynska, E., Zhao, J., Bowman, D., 2012. Concentration and source origin of lanthanoids in the Canadian atmospheric particulate matter: a case study. Atmospheric Pollution Research 3, 270-278.
Cesari, D., De Benedetto, G., Bonasoni, P., Busetto, M., Dinoi, A., Merico, E., Chirizzi, D., Cristofanelli, P., Donateo, A., Grasso, F., 2018. Seasonal variability of PM2. 5 and PM10 composition and sources in an urban background site in Southern Italy. Science of the Total Environment 612, 202-213.
Cesari, D., Genga, A., Ielpo, P., Siciliano, M., Mascolo, G., Grasso, F., Contini, D., 2014. Source apportionment of PM2. 5 in the harbour–industrial area of Brindisi (Italy): Identification and estimation of the contribution of in-port ship emissions. Science of the Total Environment 497, 392-400.
Chan, C., Xu, X., Li, Y., Wong, K., Ding, G., Chan, L., Cheng, X., 2005. Characteristics of vertical profiles and sources of PM2. 5, PM10 and carbonaceous species in Beijing. Atmospheric Environment 39, 5113-5124.
Chang, S.-C., Lin, T.-H., Young, C.-Y., Lee, C.-T., 2011. The impact of ground-level fireworks (13 km long) display on the air quality during the traditional Yanshui Lantern Festival in Taiwan. Environmental monitoring and assessment 172, 463-479.
Chang, Y., Liu, X., Dore, A.J., Li, K., 2012. Stemming PM2. 5 pollution in China: Re-evaluating the role of ammonia, aviation and non-exhaust road traffic emissions. ACS Publications.
Chen, K.-S., Lin, C., Chou, Y.-M., 2001. Determination of source contributions to ambient PM2. 5 in Kaohsiung, Taiwan, using a receptor model. Journal of the Air & Waste Management Association 51, 489-498.
Chen, T.-F., Chang, K.-H., Tsai, C.-Y., 2014a. Modeling direct and indirect effect of long range transport on atmospheric PM2. 5 levels. Atmospheric Environment 89, 1-9.
Chen, W.-N., Chen, Y.-C., Kuo, C.-Y., Chou, C.-H., Cheng, C.-H., Huang, C.-C., Chang, S.-Y., Raman, M.R., Shang, W.-L., Chuang, T.-Y., 2014b. The real-time method of assessing the contribution of individual sources on visibility degradation in Taichung. Science of the Total Environment 497, 219-228.
Chen, Y.-C., Hsu, C.-Y., Lin, S.-L., Chang-Chien, G.-P., Chen, M.-J., Fang, G.-C., Chiang, H.-C., 2015. Characteristics of concentrations and metal compositions for PM2. 5 and PM2. 5–10 in Yunlin County, Taiwan during air quality deterioration. Aerosol Air Qual. Res 15, 2571-2583.
Cheng, K., Wang, Y., Tian, H., Gao, X., Zhang, Y., Wu, X., Zhu, C., Gao, J., 2015. Atmospheric emission characteristics and control policies of five precedent-controlled toxic heavy metals from anthropogenic sources in China. Environmental science & technology 49, 1206-1214.
Cheng, M.-T., Chio, C.-P., Huang, C.-Y., Chen, J.-M., Wang, C.-F., Kuo, C.-Y., 2008. Chemical compositions of fine particulates emitted from oil-fired boilers. Journal of Environmental Engineering and Management 18, 355-362.
Cheng, Y., Lee, S., Ho, K., Chow, J., Watson, J., Louie, P., Cao, J., Hai, X., 2010. Chemically-speciated on-road PM2. 5 motor vehicle emission factors in Hong Kong. Science of the Total Environment 408, 1621-1627.
Cheung, K., Ntziachristos, L., Tzamkiozis, T., Schauer, J., Samaras, Z., Moore, K., Sioutas, C., 2010. Emissions of particulate trace elements, metals and organic species from gasoline, diesel, and biodiesel passenger vehicles and their relation to oxidative potential. Aerosol Science and Technology 44, 500-513.
Chow, J.C., Lowenthal, D.H., Chen, L.-W.A., Wang, X., Watson, J.G., 2015. Mass reconstruction methods for PM2. 5: a review. Air Quality, Atmosphere & Health 8, 243-263.
Chow, J.C., Watson, J.G., Kuhns, H., Etyemezian, V., Lowenthal, D.H., Crow, D., Kohl, S.D., Engelbrecht, J.P., Green, M.C., 2004. Source profiles for industrial, mobile, and area sources in the Big Bend Regional Aerosol Visibility and Observational study. Chemosphere 54, 185-208.
Christian, T.J., Yokelson, R.J., Cárdenas, B., Molina, L., Engling, G., Hsu, S.-C., 2010. Trace gas and particle emissions from domestic and industrial biofuel use and garbage burning in central Mexico. Atmospheric Chemistry and Physics 10, 565-584.
Chuang, M.-T., Chou, C.C.-K., Lin, N.-H., Takami, A., Hsiao, T.-C., Lin, T.-H., Fu, J.S., Pani, S.K., Lu, Y.-R., Yang, T.-Y., 2017. A Simulation Study on PM2. 5 Sources and Meteorological Characteristics at the Northern Tip of Taiwan in the Early Stage of the Asian Haze Period. Aerosol and Air Quality Research 17, 3166-3178.
Chuang, M.-T., Chou, C.C.-K., Sopajaree, K., Lin, N.-H., Wang, J.-L., Sheu, G.-R., Chang, Y.-J., Lee, C.-T., 2013. Characterization of aerosol chemical properties from near-source biomass burning in the northern Indochina during 7-SEAS/Dongsha experiment. Atmospheric environment 78, 72-81.
Chuang, M.-T., Fu, J.S., Jang, C.J., Chan, C.-C., Ni, P.-C., Lee, C.-T., 2008. Simulation of long-range transport aerosols from the Asian Continent to Taiwan by a Southward Asian high-pressure system. Science of the total environment 406, 168-179.
Chung, Y.-S., Kim, T.-K., Kim, K.-H., 1996. Temporal variation and cause of acidic precipitation from a monitoring network in Korea. Atmospheric Environment 30, 2429-2435.
Clements, A.L., Fraser, M.P., Upadhyay, N., Herckes, P., Sundblom, M., Lantz, J., Solomon, P.A., 2017. Source identification of coarse particles in the Desert Southwest, USA using Positive Matrix Factorization. Atmospheric Pollution Research 8, 873-884.
Climate Change, I., 2013. The physical science basis. Contribution of Working GroupI to the Fifth Assessment Report of the Intergovernmental Panel onClimate Change. United Nations: Geneva.
Colbeck, I., Harrison, R.M., 1984. Ozone—secondary aerosol—visibility relationships in North-West England. Science of the Total Environment 34, 87-100.
Condie, K.C., 1993. Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. Chemical geology 104, 1-37.
Coppin, F., Berger, G., Bauer, A., Castet, S., Loubet, M., 2002. Sorption of lanthanides on smectite and kaolinite. Chemical Geology 182, 57-68.
Costa, D.L., Dreher, K.L., 1997. Bioavailable transition metals in particulate matter mediate cardiopulmonary injury in healthy and compromised animal models. Environmental health perspectives 105, 1053.
Culkin, F., Cox, R., 1976. Sodium, potassium, magnesium, calcium and strontium in sea water, Deep Sea Research and Oceanographic Abstracts. Elsevier, pp. 789-804.
Cullers, R.L., Chaudhuri, S., Arnold, B., Lee, M., Wolf Jr, C.W., 1975. Rare earth distributions in clay minerals and in the clay-sized fraction of the Lower Permian Havensville and Eskridge shales of Kansas and Oklahoma. Geochimica et Cosmochimica Acta 39, 1691-1703.
Dadvand, P., Parker, J., Bell, M.L., Bonzini, M., Brauer, M., Darrow, L.A., Gehring, U., Glinianaia, S.V., Gouveia, N., Ha, E.-h., 2013. Maternal exposure to particulate air pollution and term birth weight: a multi-country evaluation of effect and heterogeneity. Environmental health perspectives 121, 267.
Davis, H.T., Aelion, C.M., McDermott, S., Lawson, A.B., 2009. Identifying natural and anthropogenic sources of metals in urban and rural soils using GIS-based data, PCA, and spatial interpolation. Environmental Pollution 157, 2378-2385.
de la Campa, A.M.S., Jesús, D., González-Castanedo, Y., Fernández-Camacho, R., Alastuey, A., Querol, X., Pio, C., 2010. High concentrations of heavy metals in PM from ceramic factories of Southern Spain. Atmospheric Research 96, 633-644.
Duan, J., Tan, J., 2013. Atmospheric heavy metals and arsenic in China: situation, sources and control policies. Atmospheric Environment 74, 93-101.
Dutkiewicz, V.A., Qureshi, S., Husain, L., Schwab, J.J., Demerjian, K.L., 2006. Elemental composition of PM2. 5 aerosols in Queens, New York: Evaluation of sources of fine-particle mass. Atmospheric Environment 40, 347-359.
Dzubay, T.G., Stevens, R.K., Gordon, G.E., Olmez, I., Sheffield, A.E., Courtney, W.J., 1988. A composite receptor method applied to Philadelphia aerosol. Environmental science & technology 22, 46-52.
Ebisu, K., Malig, B., Hasheminassab, S., Sioutas, C., Basu, R., 2018. Cause-specific stillbirth and exposure to chemical constituents and sources of fine particulate matter. Environmental research 160, 358-364.
England, G.C., 2004. Development of Fine Particulate Emission Factors and Speciation Profiles for Oil and Gas-Fired Combustion Systems. GE Energy and Environmental Research Corporation (US).
Escudero, M., Alastuey, A., Moreno, T., Querol, X., Pérez, P., 2012. Open air mineral treatment operations and ambient air quality: assessment and source apportionment. Journal of Environmental Monitoring 14, 2939-2951.
Eyring, V., Isaksen, I.S., Berntsen, T., Collins, W.J., Corbett, J.J., Endresen, O., Grainger, R.G., Moldanova, J., Schlager, H., Stevenson, D.S., 2010. Transport impacts on atmosphere and climate: Shipping. Atmospheric Environment 44, 4735-4771.
Eyring, V., Köhler, H., Lauer, A., Lemper, B., 2005. Emissions from international shipping: 2. Impact of future technologies on scenarios until 2050. Journal of Geophysical Research: Atmospheres 110.
Fan, J., Leung, L.R., Li, Z., Morrison, H., Chen, H., Zhou, Y., Qian, Y., Wang, Y., 2012. Aerosol impacts on clouds and precipitation in eastern China: Results from bin and bulk microphysics. Journal of Geophysical Research: Atmospheres 117.
Fang, G.-C., Kuo, Y.-C., Zhuang, Y.-J., Tsai, K.-H., Huang, W.-C., 2017a. Study of the ambient air metallic elements Cr, Cu, Zn, Cd and Pb at HAF sampling sites. Environmental geochemistry and health 39, 879-887.
Fang, T., Guo, H., Zeng, L., Verma, V., Nenes, A., Weber, R.J., 2017b. Highly acidic ambient particles, soluble metals, and oxidative potential: a link between sulfate and aerosol toxicity. Environmental science & technology 51, 2611-2620.
Fernández-Espinosa, A., Ternero-Rodríguez, M., 2004. Study of traffic pollution by metals in Seville (Spain) by physical and chemical speciation methods. Analytical and bioanalytical chemistry 379, 684-699.
Foltescu, V., Lindgren, E.S., Isakson, J., Öblad, M., Tiede, R., Sommar, J., Pacyna, J., Toerseth, K., 1996. Airborne concentrations and deposition fluxes of major and trace species at marine stations in southern Scandinavia. Atmospheric Environment 30, 3857-3872.
Font, A., de Hoogh, K., Leal-Sanchez, M., Ashworth, D.C., Brown, R.J., Hansell, A.L., Fuller, G.W., 2015. Using metal ratios to detect emissions from municipal waste incinerators in ambient air pollution data. Atmospheric environment 113, 177-186.
Fujii, Y., Mahmud, M., Tohno, S., Okuda, T., Mizohata, A., 2016. A case study of PM2. 5 characterization in Bangi, Selangor, Malaysia during the southwest monsoon season. Aerosol and Air Quality Research 16, 2685-2691.
Fukai, R., Shiokawa, F., 1955. On the main chemical components dissolved in the adjacent waters to the Aleutian Islands in the North Pacific. Bulletin of the Chemical Society of Japan 28, 636-640.
Fuzzi, S., Baltensperger, U., Carslaw, K., Decesari, S., Denier Van Der Gon, H., Facchini, M., Fowler, D., Koren, I., Langford, B., Lohmann, U., 2015. Particulate matter, air quality and climate: lessons learned and future needs. Atmospheric chemistry and physics 15, 8217-8299.
Galindo, N., Yubero, E., Nicolás, J., Crespo, J., Pastor, C., Carratalá, A., Santacatalina, M., 2011. Water-soluble ions measured in fine particulate matter next to cement works. Atmospheric environment 45, 2043-2049.
Garza-Galindo, R., Morton-Bermea, O., Hernández-Álvarez, E., Ordoñez-Godínez, S.L., Amador-Muñoz, O., Beramendi-Orosco, L.E., Retama, A., Miranda, J., Rosas-Pérez, I., 2019. Spatial and temporal distribution of metals in PM 2.5 during 2013: assessment of wind patterns to the impacts of geogenic and anthropogenic sources. Environmental monitoring and assessment 191, 165.
Geagea, M.L., Stille, P., Millet, M., Perrone, T., 2007. REE characteristics and Pb, Sr and Nd isotopic compositions of steel plant emissions. Science of the Total Environment 373, 404-419.
Gietl, J.K., Lawrence, R., Thorpe, A.J., Harrison, R.M., 2010. Identification of brake wear particles and derivation of a quantitative tracer for brake dust at a major road. Atmospheric Environment 44, 141-146.
Gillies, J., Gertler, A., Sagebiel, J., Dippel, n.W., 2001. On-road particulate matter (PM2. 5 and PM10) emissions in the Sepulveda Tunnel, Los Angeles, California. Environmental science & technology 35, 1054-1063.
Godri, K., Evans, G., Slowik, J., Knox, A., Abbatt, J., Brook, J., Dann, T., Dabek-Zlotorzynska, E., 2009. Evaluation and application of a semi-continuous chemical characterization system for water soluble inorganic PM 2.5 and associated precursor gases. Atmospheric Measurement Techniques 2, 65-80.
Grieshop, A.P., Lipsky, E.M., Pekney, N.J., Takahama, S., Robinson, A.L., 2006. Fine particle emission factors from vehicles in a highway tunnel: Effects of fleet composition and season. Atmospheric Environment 40, 287-298.
Gu, J., Du, S., Han, D., Hou, L., Yi, J., Xu, J., Liu, G., Han, B., Yang, G., Bai, Z.-P., 2014. Major chemical compositions, possible sources, and mass closure analysis of PM 2.5 in Jinan, China. Air Quality, Atmosphere & Health 7, 251-262.
Hallquist, M., Wenger, J.C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., Dommen, J., Donahue, N., George, C., Goldstein, A., 2009. The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmospheric chemistry and physics 9, 5155-5236.
Han, F., Kota, S.H., Wang, Y., Zhang, H., 2017. Source apportionment of PM2. 5 in Baton Rouge, Louisiana during 2009–2014. Science of the Total Environment 586, 115-126.
Han, J., Moon, K., Lee, S., Kim, Y., Ryu, S., Cliff, S., Yi, S., 2005. Size-resolved source apportionment of ambient particles by positive matrix factorization. Atmospheric Chemistry and Physics Discussions 5, 5223-5252.
Han, Y., Cao, J., Chow, J.C., Watson, J.G., An, Z., Jin, Z., Fung, K., Liu, S., 2007. Evaluation of the thermal/optical reflectance method for discrimination between char- and soot-EC. Chemosphere 69, 569-574.
Han, Y., Cao, J., Lee, S., Ho, K., An, Z., 2010. Different characteristics of char and soot in the atmosphere and their ratio as an indicator for source identification in Xi′an, China. Atmospheric Chemistry and Physics 10, 595-607.
Hao, J., Wang, L., 2005. Improving urban air quality in China: Beijing case study. Journal of the Air & Waste Management Association 55, 1298-1305.
Hao, Y., Meng, X., Yu, X., Lei, M., Li, W., Shi, F., Yang, W., Zhang, S., Xie, S., 2018. Characteristics of trace elements in PM2. 5 and PM10 of Chifeng, northeast China: Insights into spatiotemporal variations and sources. Atmospheric research 213, 550-561.
Harkins, W.D., 1917. THE EVOLUTION OF THE ELEMENTS AND THE STABILITY OF COMPLEX ATOMS. I. A NEW PERIODIC SYSTEM WHICH SHOWS A RELATION BETWEEN THE ABUNDANCE OF THE ELEMENTS AND THE STRUCTURE OF THE NUCLEI OF ATOMS. Journal of the American Chemical Society 39, 856-879.
Harrison, R.M., Smith, D., Luhana, L., 1996. Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham, UK. Environmental Science & Technology 30, 825-832.
He, L.-Y., Hu, M., Zhang, Y.-H., Huang, X.-F., Yao, T.-T., 2008. Fine particle emissions from on-road vehicles in the Zhujiang Tunnel, China. Environmental science & technology 42, 4461-4466.
Heinizenberg, J., 1989. Fine particles in the global troposphere. Tellus 418, 149-160.
Hellebust, S., Allanic, A., O′Connor, I., Jourdan, C., Healy, D., Sodeau, J., 2010. Sources of ambient concentrations and chemical composition of PM2. 5–0.1 in Cork Harbour, Ireland. Atmospheric Research 95, 136-149.
Heo, J.-B., Hopke, P., Yi, S.-M., 2009. Source apportionment of PM 2.5 in Seoul, Korea. Atmospheric Chemistry and Physics 9, 4957-4971.
Herndon, J.M., Whiteside, M., 2017. Further evidence of coal fly ash utilization in tropospheric geoengineering: Implications on human and environmental health. J. Geog. Environ. Earth Sci. Intn 9, 1-8.
Ho, K., Lee, S., Chow, J.C., Watson, J.G., 2003. Characterization of PM10 and PM2. 5 source profiles for fugitive dust in Hong Kong. Atmospheric Environment 37, 1023-1032.
Holloway, T., Levy Ii, H., Carmichael, G., 2002. Transfer of reactive nitrogen in Asia: development and evaluation of a source–receptor model. Atmospheric Environment 36, 4251-4264.
Horemans, B., Cardell, C., Bencs, L., Kontozova-Deutsch, V., De Wael, K., Van Grieken, R., 2011. Evaluation of airborne particles at the Alhambra monument in Granada, Spain. Microchemical Journal 99, 429-438.
Hsu, C.-Y., Chiang, H.-C., Chen, M.-J., Chuang, C.-Y., Tsen, C.-M., Fang, G.-C., Tsai, Y.-I., Chen, N.-T., Lin, T.-Y., Lin, S.-L., 2017. Ambient PM2. 5 in the residential area near industrial complexes: Spatiotemporal variation, source apportionment, and health impact. Science of the Total Environment 590, 204-214.
Hsu, C.-Y., Chiang, H.-C., Lin, S.-L., Chen, M.-J., Lin, T.-Y., Chen, Y.-C., 2016. Elemental characterization and source apportionment of PM10 and PM2. 5 in the western coastal area of central Taiwan. Science of the Total Environment 541, 1139-1150.
Hsu, S.-C., Liu, S.C., Jeng, W.-L., Lin, F.-J., Huang, Y.-T., Lung, S.-C.C., Liu, T.-H., Tu, J.-Y., 2005. Variations of Cd/Pb and Zn/Pb ratios in Taipei aerosols reflecting long-range transport or local pollution emissions. Science of the Total Environment 347, 111-121.
Hsu, S.-C., Liu, S.C., Lin, C.-Y., Hsu, R.-T., Huang, Y.-T., Chen, Y.-W., 2004. Metal Compositions of PM10 and PM 2.5 Aerosols in Taipei during Spring, 2002. Terrestrial, Atmospheric and Oceanic Sciences 15, 925-948.
Hsu, S.C., Liu, S.C., Huang, Y.T., Chou, C.C., Lung, S., Liu, T.H., Tu, J.Y., Tsai, F., 2009. Long‐range southeastward transport of Asian biosmoke pollution: Signature detected by aerosol potassium in northern Taiwan. Journal of Geophysical Research: Atmospheres 114.
Hsu, Y.-C., Lai, M.-H., Wang, W.-C., Chiang, H.-L., Shieh, Z.-X., 2008. Characteristics of water-soluble ionic species in Fine (PM2. 5) and Coarse Particulate Matter (PM10–2.5) in Kaohsiung, Southern Taiwan. Journal of the Air & Waste Management Association 58, 1579-1589.
Huang, B.-F., Chang, Y.-C., Han, A.-L., Hsu, H.-T., 2018. Metal composition of ambient PM2. 5 influences the pulmonary function of schoolchildren: A case study of school located nearby of an electric arc furnace factory. Toxicology and industrial health 34, 253-261.
Huang, X., Olmez, I., Aras, N.K., Gordon, G.E., 1994. Emissions of trace elements from motor vehicles: potential marker elements and source composition profile. Atmospheric environment 28, 1385-1391.
Hulskotte, J., Roskam, G., Van Der Gon, H.D., 2014. Elemental composition of current automotive braking materials and derived air emission factors. Atmospheric environment 99, 436-445.
Hung-Lung, C., Yao-Sheng, H., 2009. Particulate matter emissions from on-road vehicles in a freeway tunnel study. Atmospheric Environment 43, 4014-4022.
ICRP, I., 1994. ICRP publication 66: human respiratory tract model for radiological protection.
Iijima, A., Sato, K., Yano, K., Tago, H., Kato, M., Kimura, H., Furuta, N., 2007. Particle size and composition distribution analysis of automotive brake abrasion dusts for the evaluation of antimony sources of airborne particulate matter. Atmospheric Environment 41, 4908-4919.
Ikemori, F., Honjyo, K., Yamagami, M., Nakamura, T., 2015. Influence of contemporary carbon originating from the 2003 Siberian forest fire on organic carbon in PM2. 5 in Nagoya, Japan. Science of the Total Environment 530, 403-410.
Isakson, J., Persson, T., Lindgren, E.S., 2001. Identification and assessment of ship emissions and their effects in the harbour of Göteborg, Sweden. Atmospheric Environment 35, 3659-3666.
Ivošević, T., Orlić, I., Čargonja, M., 2016. Fine particulate matter from ship emissions in the Port of Rijeka, Croatia. Pomorski zbornik, 201-212.
Jaafar, S.A., Latif, M.T., Razak, I.S., Wahid, N.B.A., Khan, M.F., Srithawirat, T., 2018. Composition of carbohydrates, surfactants, major elements and anions in PM2. 5 during the 2013 Southeast Asia high pollution episode in Malaysia. Particuology 37, 119-126.
Jacobson, M., Hansson, H.C., Noone, K., Charlson, R., 2000. Organic atmospheric aerosols: Review and state of the science. Reviews of Geophysics 38, 267-294.
Jandacka, D., Durcanska, D., Bujdos, M., 2017. The contribution of road traffic to particulate matter and metals in air pollution in the vicinity of an urban road. Transportation Research Part D: Transport and Environment 50, 397-408.
Jose, S., Niranjan, K., Gharai, B., Rao, P.V.N., Nair, V.S., 2016. Characterisation of absorbing aerosols using ground and satellite data at an urban location, Hyderabad. Aerosol Air Qual. Res 16, 1427-1440.
Kamber, B.S., 2009. Geochemical fingerprinting: 40 years of analytical development and real world applications. Applied Geochemistry 24, 1074-1086.
Kamber, B.S., Greig, A., Collerson, K.D., 2005. A new estimate for the composition of weathered young upper continental crust from alluvial sediments, Queensland, Australia. Geochimica et Cosmochimica Acta 69, 1041-1058.
Kanakidou, M., Seinfeld, J., Pandis, S., Barnes, I., Dentener, F., Facchini, M., Dingenen, R.V., Ervens, B., Nenes, A., Nielsen, C., 2005. Organic aerosol and global climate modelling: a review. Atmospheric Chemistry and Physics 5, 1053-1123.
Kanniah, K.D., Yaso, N., 2010. Preliminary analysis of the spatial and temporal patterns of aerosols and their impact on climate in Malaysia using MODIS satellite data. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science 38, 386-391.
Kara, M., Hopke, P.K., Dumanoglu, Y., Altiok, H., Elbir, T., Odabasi, M., Bayram, A., 2015. Characterization of PM using multiple site data in a heavily industrialized region of Turkey. Aerosol and Air Quality Research 15, 11-27 (i.
Karar, K., Gupta, A., Kumar, A., Biswas, A.K., 2006. Characterization and identification of the sources of chromium, zinc, lead, cadmium, nickel, manganese and iron in PM 10 particulates at the two sites of Kolkata, India. Environmental Monitoring and Assessment 120, 347-360.
Kfoury, A., 2013. Origin and physichochemical behaviour of atmospheric PM₂. ₅ in cities located in the area of the Nord-Pas-de-Calais region, France. Université du Littoral Côte d′Opale.
Kfoury, A., Ledoux, F., Roche, C., Delmaire, G., Roussel, G., Courcot, D., 2016. PM2. 5 source apportionment in a French urban coastal site under steelworks emission influences using constrained non-negative matrix factorization receptor model. Journal of Environmental Sciences 40, 114-128.
Khan, M., Latif, M.T., Saw, W., Amil, N., Nadzir, M.S.M., Sahani, M., Tahir, N., Chung, J., 2016a. Fine particulate matter in the tropical environment: monsoonal effects, source apportionment, and health risk assessment. Atmospheric Chemistry and Physics 16, 597-617.
Khan, M.B., Masiol, M., Formenton, G., Di Gilio, A., de Gennaro, G., Agostinelli, C., Pavoni, B., 2016b. Carbonaceous PM2. 5 and secondary organic aerosol across the Veneto region (NE Italy). Science of the Total Environment 542, 172-181.
Khezri, B., Mo, H., Yan, Z., Chong, S.-L., Heng, A.K., Webster, R.D., 2013. Simultaneous online monitoring of inorganic compounds in aerosols and gases in an industrialized area. Atmospheric environment 80, 352-360.
Kicińska, A., Bożęcki, P., 2018. Metals and mineral phases of dusts collected in different urban parks of Krakow and their impact on the health of city residents. Environmental geochemistry and health 40, 473-488.
Kim, B.-G., Park, S.-U., 2001. Transport and evolution of a winter-time Yellow sand observed in Korea. Atmospheric Environment 35, 3191-3201.
Kim, E., Hopke, P.K., 2004. Source apportionment of fine particles in Washington, DC, utilizing temperature-resolved carbon fractions. Journal of the Air & Waste Management Association 54, 773-785.
Kim, E., Hopke, P.K., 2008. Source characterization of ambient fine particles at multiple sites in the Seattle area. Atmospheric Environment 42, 6047-6056.
Kim, E., Hopke, P.K., Edgerton, E.S., 2003. Source identification of Atlanta aerosol by positive matrix factorization. Journal of the Air & Waste Management Association 53, 731-739.
Kim, S., Kim, T.-Y., Yi, S.-M., Heo, J., 2018. Source apportionment of PM2. 5 using positive matrix factorization (PMF) at a rural site in Korea. Journal of environmental management 214, 325-334.
Kitada, T., Tanaka, K., 1992. Simulated semi-global scale transport of SO 2 and SO 4= from East Asia to the Northern Pacific in spring season: The role of low and high pressure systems, Air Pollution Modeling and Its Application IX. Springer, pp. 445-454.
Kittelson, D.B., Watts, W.F., Johnson, J.P., 2004. Nanoparticle emissions on Minnesota highways. Atmospheric Environment 38, 9-19.
Kittner, N., Fadadu, R.P., Buckley, H.L., Schwarzman, M.R., Kammen, D.M., 2018. Trace Metal Content of Coal Exacerbates Air-Pollution-Related Health Risks: The Case of Lignite Coal in Kosovo. Environmental science & technology 52, 2359-2367.
Kitto, M.E., Anderson, D.L., Gordon, G.E., Olmez, I., 1992. Rare earth distributions in catalysts and airborne particles. Environmental science & technology 26, 1368-1375.
Koelmans, A.A., Jonker, M.T., Cornelissen, G., Bucheli, T.D., Van Noort, P.C., Gustafsson, Ö., 2006. Black carbon: the reverse of its dark side. Chemosphere 63, 365-377.
Kong, S., Ding, X., Bai, Z., Han, B., Chen, L., Shi, J., Li, Z., 2010. A seasonal study of polycyclic aromatic hydrocarbons in PM2. 5 and PM2. 5–10 in five typical cities of Liaoning Province, China. Journal of Hazardous Materials 183, 70-80.
Kong, S., Ji, Y., Lu, B., Chen, L., Han, B., Li, Z., Bai, Z., 2011. Characterization of PM10 source profiles for fugitive dust in Fushun-a city famous for coal. Atmospheric Environment 45, 5351-5365.
Kong, S., Li, L., Li, X., Yin, Y., Chen, K., Liu, D., Yuan, L., Zhang, Y., Shan, Y., Ji, Y., 2015. The impacts of firework burning at the Chinese Spring Festival on air quality: insights of tracers, source evolution and aging processes. Atmospheric Chemistry and Physics 15, 2167-2184.
Kowalczyk, G.S., Gordon, G.E., Rheingrover, S.W., 1982. Identification of atmospheric particulate sources in Washington, DC using chemical element balances. Environmental Science & Technology 16, 79-90.
Krall, J.R., Ladva, C.N., Russell, A.G., Golan, R., Peng, X., Shi, G., Greenwald, R., Raysoni, A.U., Waller, L.A., Sarnat, J.A., 2018. Source-specific pollution exposure and associations with pulmonary response in the Atlanta Commuters Exposure Studies. Journal of exposure science & environmental epidemiology 28, 337.
Kudo, S., Sekiguchi, K., Kim, K.H., Kinoshita, M., Möller, D., Wang, Q., Yoshikado, H., Sakamoto, K., 2012. Differences of chemical species and their ratios between fine and ultrafine particles in the roadside environment. Atmospheric environment 62, 172-179.
Kulkarni, P., Chellam, S., Fraser, M.P., 2006. Lanthanum and lanthanides in atmospheric fine particles and their apportionment to refinery and petrochemical operations in Houston, TX. Atmospheric Environment 40, 508-520.
Kulkarni, P., Chellam, S., Fraser, M.P., 2007. Tracking petroleum refinery emission events using lanthanum and lanthanides as elemental markers for PM2. 5. Environmental science & technology 41, 6748-6754.
Kulmala, M., Petäjä, T., Nieminen, T., Sipilä, M., Manninen, H.E., Lehtipalo, K., Dal Maso, M., Aalto, P.P., Junninen, H., Paasonen, P., 2012. Measurement of the nucleation of atmospheric aerosol particles. Nature protocols 7, 1651.
Kuo, C.-Y., Lin, Y.-R., Chang, S.-Y., Lin, C.-Y., Chou, C.-H., 2013. Aerosol characteristics of different types of episode. Environmental monitoring and assessment 185, 9777-9787.
Kuo, C.-Y., Wang, J.-Y., Chang, S.-H., Chen, M.-C., 2009. Study of metal concentrations in the environment near diesel transport routes. Atmospheric Environment 43, 3070-3076.
Kuo, S.-C., Hsieh, L.-Y., Tsai, C.-H., Tsai, Y.I., 2007. Characterization of PM2. 5 fugitive metal in the workplaces and the surrounding environment of a secondary aluminum smelter. Atmospheric Environment 41, 6884-6900.
Kyllönen, K., Karlsson, V., Ruoho-Airola, T., 2009. Trace element deposition and trends during a ten year period in Finland. Science of the Total Environment 407, 2260-2269.
Lai, A.M., Carter, E., Shan, M., Ni, K., Clark, S., Ezzati, M., Wiedinmyer, C., Yang, X., Baumgartner, J., Schauer, J.J., 2019. Chemical composition and source apportionment of ambient, household, and personal exposures to PM2. 5 in communities using biomass stoves in rural China. Science of The Total Environment 646, 309-319.
Lawrence, S., Sokhi, R., Ravindra, K., Mao, H., Prain, H.D., Bull, I.D., 2013. Source apportionment of traffic emissions of particulate matter using tunnel measurements. Atmospheric environment 77, 548-557.
Ledoux, F., Kfoury, A., Delmaire, G., Roussel, G., El Zein, A., Courcot, D., 2017. Contributions of local and regional anthropogenic sources of metals in PM2. 5 at an urban site in northern France. Chemosphere 181, 713-724.
Ledoux, F., Roche, C., Cazier, F., Beaugard, C., Courcot, D., 2018. Influence of ship emissions on NOx, SO2, O3 and PM concentrations in a North-Sea harbor in France. Journal of Environmental Sciences 71, 56-66.
Lee, C.-T., Chuang, M.-T., Chan, C.-C., Cheng, T.-J., Huang, S.-L., 2006. Aerosol characteristics from the Taiwan aerosol supersite in the Asian yellow-dust periods of 2002. Atmospheric Environment 40, 3409-3418.
Lee, E., Chan, C.K., Paatero, P., 1999. Application of positive matrix factorization in source apportionment of particulate pollutants in Hong Kong. Atmospheric Environment 33, 3201-3212.
Lee, J.H., Yoshida, Y., Turpin, B.J., Hopke, P.K., Poirot, R.L., Lioy, P.J., Oxley, J.C., 2002. Identification of sources contributing to mid-Atlantic regional aerosol. Journal of the Air & Waste Management Association 52, 1186-1205.
Lee, S.W., Pomalis, R., Kan, B., 2000. A new methodology for source characterization of oil combustion particulate matter. Fuel processing technology 65, 189-202.
Lee, W.-C., Shen, L., Catalano, P.J., Mickley, L.J., Koutrakis, P., 2017. Effects of future temperature change on PM2. 5 infiltration in the Greater Boston area. Atmospheric Environment 150, 98-105.
Lewan, M.D., 1984. Factors controlling the proportionality of vanadium to nickel in crude oils. Geochimica et Cosmochimica Acta 48, 2231-2238.
Li, H., Wang, Q.g., Yang, M., Li, F., Wang, J., Sun, Y., Wang, C., Wu, H., Qian, X., 2016. Chemical characterization and source apportionment of PM2. 5 aerosols in a megacity of Southeast China. Atmospheric Research 181, 288-299.
Li, Q., Cheng, H., Zhou, T., Lin, C., Guo, S., 2012. The estimated atmospheric lead emissions in China, 1990–2009. Atmospheric Environment 60, 1-8.
Li, T.-C., Yuan, C.-S., Huang, H.-C., Lee, C.-L., Wu, S.-P., Tong, C., 2017. Clustered long-range transport routes and potential sources of PM2. 5 and their chemical characteristics around the Taiwan Strait. Atmospheric Environment 148, 152-166.
Li, T.C., Yuan, C.S., Lo, K.C., Hung, C.H., Wu, S.P., Tong, C., 2015. Seasonal variation and chemical characteristics of atmospheric particles at three islands in the Taiwan Strait. Aerosol and Air Quality Research 15, 2277-2290.
Limbeck, A., Handler, M., Puls, C., Zbiral, J., Bauer, H., Puxbaum, H., 2009. Impact of mineral components and selected trace metals on ambient PM10 concentrations. Atmospheric Environment 43, 530-538.
Lin, C.-C., Chen, S.-J., Huang, K.-L., Hwang, W.-I., Chang-Chien, G.-P., Lin, W.-Y., 2005. Characteristics of metals in nano/ultrafine/fine/coarse particles collected beside a heavily trafficked road. Environmental Science & Technology 39, 8113-8122.
Lin, C.-C., Chen, S.-J., Huang, K.-L., Lee, W.-J., Lin, W.-Y., Tsai, J.-H., Chaung, H.-C., 2008. PAHs, PAH-induced carcinogenic potency, and particle-extract-induced cytotoxicity of traffic-related nano/ultrafine particles. Environmental science & technology 42, 4229-4235.
Lin, C.-Y., Liu, S.C., Chou, C.C., Liu, T.H., Lee, C.-T., Yuan, C.-S., Shiu, C.-J., Young, C.-Y., 2004. Long-range transport of Asian dust and air pollutants to Taiwan. Terr. Atmos. Ocean. Sci 15, 759-784.
Lin, H., Guo, Y., Zheng, Y., Di, Q., Liu, T., Xiao, J., Li, X., Zeng, W., Cummings-Vaughn, L.A., Howard, S.W., 2017. Long-term effects of ambient PM2. 5 on hypertension and blood pressure and attributable risk among older Chinese adults. Hypertension, HYPERTENSIONAHA. 116.08839.
Lin, Y.-C., Tsai, C.-J., Wu, Y.-C., Zhang, R., Chi, K.-H., Huang, Y.-T., Lin, S.-H., Hsu, S.-C., 2014. Characteristics of trace metals in traffic-derived particles in Hsuehshan Tunnel, Taiwan: Size distribution, fingerprinting metal ratio, and emission factor. Atmospheric Chemistry and Physics Discussions 14, 13963-14004.
Lin, Y.-C., Tsai, C.-J., Wu, Y.-C., Zhang, R., Chi, K.-H., Huang, Y.-T., Lin, S.-H., Hsu, S.-C., 2015. Characteristics of trace metals in traffic-derived particles in Hsuehshan Tunnel, Taiwan: size distribution, potential source, and fingerprinting metal ratio. Atmospheric Chemistry and Physics 15, 4117-4130.
Liu, C.-M., Young, C.-Y., Lee, Y.-C., 2006. Influence of Asian dust storms on air quality in Taiwan. Science of the Total Environment 368, 884-897.
Liu, Y., Sato, Y., Jia, R., Xie, Y., Huang, J., Nakajima, T., 2015. Modeling study on the transport of summer dust and anthropogenic aerosols over the Tibetan Plateau. Atmospheric Chemistry and Physics 15, 12581-12594.
Lohmann, U., Feichter, J., 2005. Global indirect aerosol effects: a review. Atmospheric Chemistry and Physics 5, 715-737.
Lough, G.C., Schauer, J.J., Park, J.-S., Shafer, M.M., DeMinter, J.T., Weinstein, J.P., 2005. Emissions of metals associated with motor vehicle roadways. Environmental science & technology 39, 826-836.
Lu, H.-Y., Lin, S.-L., Mwangi, J.K., Wang, L.-C., Lin, H.-Y., 2016. Characteristics and source apportionment of atmospheric PM2. 5 at a coastal city in southern Taiwan. Aerosol Air Qual. Res 16, 1022-1034.
Lu, S., Liu, D., Zhang, W., Liu, P., Fei, Y., Gu, Y., Wu, M., Yu, S., Yonemochi, S., Wang, X., 2015. Physico-chemical characterization of PM2. 5 in the microenvironment of Shanghai subway. Atmospheric research 153, 543-552.
Maenhaut, W., Raes, N., Chi, X., Cafmeyer, J., Wang, W., 2008. Chemical composition and mass closure for PM2. 5 and PM10 aerosols at K‐puszta, Hungary, in summer 2006. X‐Ray Spectrometry: An International Journal 37, 193-197.
Malm, W.C., Sisler, J.F., Huffman, D., Eldred, R.A., Cahill, T.A., 1994. Spatial and seasonal trends in particle concentration and optical extinction in the United States. Journal of Geophysical Research: Atmospheres 99, 1347-1370.
Mancilla, Y., Mendoza, A., 2012. A tunnel study to characterize PM2. 5 emissions from gasoline-powered vehicles in Monterrey, Mexico. Atmospheric environment 59, 449-460.
Manousakas, M., Papaefthymiou, H., Diapouli, E., Migliori, A., Karydas, A., Bogdanovic-Radovic, I., Eleftheriadis, K., 2017. Assessment of PM2. 5 sources and their corresponding level of uncertainty in a coastal urban area using EPA PMF 5.0 enhanced diagnostics. Science of the Total Environment 574, 155-164.
Marcazzan, G.M., Vaccaro, S., Valli, G., Vecchi, R., 2001. Characterisation of PM10 and PM2. 5 particulate matter in the ambient air of Milan (Italy). Atmospheric Environment 35, 4639-4650.
Marris, H., Deboudt, K., Augustin, P., Flament, P., Blond, F., Fiani, E., Fourmentin, M., Delbarre, H., 2012. Fast changes in chemical composition and size distribution of fine particles during the near-field transport of industrial plumes. Science of the total Environment 427, 126-138.
Matawle, J.L., Pervez, S., Dewangan, S., Shrivastava, A., Tiwari, S., Pant, P., Deb, M.K., Pervez, Y., 2015. Characterization of PM2. 5 source profiles for traffic and dust sources in Raipur, India. Aerosol and Air Quality Research 15, 2537-2548.
Mateus, V.L., Gioda, A., 2017. A candidate framework for PM2. 5 source identification in highly industrialized urban-coastal areas. Atmospheric environment 164, 147-164.
Mazzei, F., D′alessandro, A., Lucarelli, F., Nava, S., Prati, P., Valli, G., Vecchi, R., 2008. Characterization of particulate matter sources in an urban environment. Science of the Total Environment 401, 81-89.
Mbengue, S., Alleman, L.Y., Flament, P., 2017. Metal-bearing fine particle sources in a coastal industrialized environment. Atmospheric Research 183, 202-211.
McInnes, L., Covert, D., Quinn, P., Germani, M., 1994. Measurements of chloride depletion and sulfur enrichment in individual sea‐salt particles collected from the remote marine boundary layer. Journal of Geophysical Research: Atmospheres 99, 8257-8268.
Meng, C., Wang, L., Zhang, F., Wei, Z., Ma, S., Ma, X., Yang, J., 2016. Characteristics of concentrations and water-soluble inorganic ions in PM2. 5 in Handan City, Hebei province, China. Atmospheric Research 171, 133-146.
Merico, E., Donateo, A., Gambaro, A., Cesari, D., Gregoris, E., Barbaro, E., Dinoi, A., Giovanelli, G., Masieri, S., Contini, D., 2016. Influence of in-port ships emissions to gaseous atmospheric pollutants and to particulate matter of different sizes in a Mediterranean harbour in Italy. Atmospheric environment 139, 1-10.
Minguillón, M.C., Querol, X., Alastuey, A., Monfort, E., Miró, J.V., 2007. PM sources in a highly industrialised area in the process of implementing PM abatement technology. Quantification and evolution. Journal of Environmental Monitoring 9, 1071-1081.
Minguillón, M.C., Monfort, E., Querol, X., Alastuey, A., Celades, I., Miró, J.V., 2009. Effect of ceramic industrial particulate emission control on key components of ambient PM10. Journal of Environmental Management 90, 2558-2567.
Mokhtar, M.M., Taib, R.M., Hassim, M.H., 2014. Understanding selected trace elements behavior in a coal-fired power plant in Malaysia for assessment of abatement technologies. Journal of the Air & Waste Management Association 64, 867-878.
Moldanová, J., Fridell, E., Popovicheva, O., Demirdjian, B., Tishkova, V., Faccinetto, A., Focsa, C., 2009. Characterisation of particulate matter and gaseous emissions from a large ship diesel engine. Atmospheric Environment 43, 2632-2641.
Mooibroek, D., Schaap, M., Weijers, E., Hoogerbrugge, R., 2011. Source apportionment and spatial variability of PM2. 5 using measurements at five sites in the Netherlands. Atmospheric Environment 45, 4180-4191.
Moreno, T., Karanasiou, A., Amato, F., Lucarelli, F., Nava, S., Calzolai, G., Chiari, M., Coz, E., Artiñano, B., Lumbreras, J., 2013. Daily and hourly sourcing of metallic and mineral dust in urban air contaminated by traffic and coal-burning emissions. Atmospheric Environment 68, 33-44.
Moreno, T., Querol, X., Alastuey, A., de la Rosa, J., de la Campa, A.M.S., Minguillón, M., Pandolfi, M., González-Castanedo, Y., Monfort, E., Gibbons, W., 2010. Variations in vanadium, nickel and lanthanoid element concentrations in urban air. Science of the Total Environment 408, 4569-4579.
Moreno, T., Querol, X., Alastuey, A., Gibbons, W., 2008a. Identification of FCC refinery atmospheric pollution events using lanthanoid-and vanadium-bearing aerosols. Atmospheric Environment 42, 7851-7861.
Moreno, T., Querol, X., Alastuey, A., Minguillón, M.C., Pey, J., Rodriguez, S., Miró, J.V., Felis, C., Gibbons, W., 2007. Recreational atmospheric pollution episodes: inhalable metalliferous particles from firework displays. Atmospheric Environment 41, 913-922.
Moreno, T., Querol, X., Alastuey, A.s., Pey, J., Minguillón, M.C., Pérez, N., Bernabé, R.M., Blanco, S., Cárdenas, B., Gibbons, W., 2008b. Lanthanoid geochemistry of urban atmospheric particulate matter. Environmental science & technology 42, 6502-6507.
Moreno, T., Querol, X., Castillo, S., Alastuey, A., Cuevas, E., Herrmann, L., Mounkaila, M., Elvira, J., Gibbons, W., 2006. Geochemical variations in aeolian mineral particles from the Sahara–Sahel Dust Corridor. Chemosphere 65, 261-270.
Morishita, M., Keeler, G.J., Kamal, A.S., Wagner, J.G., Harkema, J.R., Rohr, A.C., 2011. Identification of ambient PM2. 5 sources and analysis of pollution episodes in Detroit, Michigan using highly time-resolved measurements. Atmospheric Environment 45, 1627-1637.
Morishita, M., Keeler, G.J., Wagner, J.G., Harkema, J.R., 2006. Source identification of ambient PM2. 5 during summer inhalation exposure studies in Detroit, MI. Atmospheric Environment 40, 3823-3834.
Morselli, L., Passarini, F., Bartoli, M., 2002. The environmental fate of heavy metals arising from a MSW incineration plant. Waste Management 22, 875-881.
Munksgaard, N.C., Lim, K., Parry, D.L., 2003. Rare earth elements as provenance indicators in North Australian estuarine and coastal marine sediments. Estuarine, Coastal and Shelf Science 57, 399-409.
Murillo, J.H., Ramos, A.C., García, F.Á., Jiménez, S.B., Cárdenas, B., Mizohata, A., 2012. Chemical composition of PM2. 5 particles in Salamanca, Guanajuato Mexico: source apportionment with receptor models. Atmospheric research 107, 31-41.
Murillo, J.H., Roman, S.R., Marin, J.F.R., Ramos, A.C., Jimenez, S.B., Gonzalez, B.C., Baumgardner, D.G., 2013. Chemical characterization and source apportionment of PM10 and PM2. 5 in the metropolitan area of Costa Rica, Central America. Atmospheric Pollution Research 4, 181-190.
Nakata, M., 2018. Aerosol impacts on the atmospheric circulation field over Asia, Remote Sensing and Modeling of the Atmosphere, Oceans, and Interactions VII. International Society for Optics and Photonics, p. 107820M.
Nielsen, M., Nielsen, O.-K., Thomsen, M., 2010. Emissions from decentralised CHP plants 2007-Energinet. dk Environmental project no. 07/1882: Project report 5-Emission factors and emission inventory for decentralised CHP production.
Nigam, A., Welch, W., Wayne Miller, J., Cocher III, D., 2006. Effect of fuel sulphur content and control technology on PM emission from ship’s auxiliary engine, Proceeding international aerosol conference, St. Paul, USA, pp. 10-15.
Odum, H.T., 1951. Notes on the strontium content of sea water, celestite radiolaria, and strontianite snail shells. Science 114, 211-213.
Okuda, T., Katsuno, M., Naoi, D., Nakao, S., Tanaka, S., He, K., Ma, Y., Lei, Y., Jia, Y., 2008. Trends in hazardous trace metal concentrations in aerosols collected in Beijing, China from 2001 to 2006. Chemosphere 72, 917-924.
Olmez, I., Gordon, G.E., 1985. Rare earths: atmospheric signatures for oil-fired power plants and refineries. Science 229, 966-968.
Olmez, I., Sheffield, A., Gordon, G., Houck, J., Pritchett, L., Cooper, J., Dzubay, T., Bennett, R., 1988. Compositions of particles from selected sources in Philadelphia for receptor modeling applications. Japca 38, 1392-1402.
Oravisjärvi, K., Timonen, K., Wiikinkoski, T., Ruuskanen, A., Heinänen, K., Ruuskanen, J., 2003. Source contributions to PM2. 5 particles in the urban air of a town situated close to a steel works. Atmospheric Environment 37, 1013-1022.
Organization, W.H., 2013. Health effects of particulate matter. Policy implications for countries in Eastern Europe. Caucasus and central Asia. World Health Organization Regional Office for Europe, Copenhagen.
Paatero, P., 1997. Least squares formulation of robust non-negative factor analysis. Chemometrics and intelligent laboratory systems 37, 23-35.
Pacyna, E.G., Pacyna, J.M., Fudala, J., Strzelecka-Jastrzab, E., Hlawiczka, S., Panasiuk, D., Nitter, S., Pregger, T., Pfeiffer, H., Friedrich, R., 2007. Current and future emissions of selected heavy metals to the atmosphere from anthropogenic sources in Europe. Atmospheric Environment 41, 8557-8566.
Pacyna, J.M., 1998. Source inventories for atmospheric trace metals. Atmospheric particles, IUPAC series on analytical and physical chemistry of environmental systems 5, 385-423.
Pacyna, J.M., Pacyna, E.G., 2001. An assessment of global and regional emissions of trace metals to the atmosphere from anthropogenic sources worldwide. Environmental Reviews 9, 269-298.
Pandolfi, M., Gonzalez-Castanedo, Y., Alastuey, A., Jesus, D., Mantilla, E., De La Campa, A.S., Querol, X., Pey, J., Amato, F., Moreno, T., 2011. Source apportionment of PM 10 and PM 2.5 at multiple sites in the strait of Gibraltar by PMF: impact of shipping emissions. Environmental Science and Pollution Research 18, 260-269.
Pant, P., Harrison, R.M., 2013. Estimation of the contribution of road traffic emissions to particulate matter concentrations from field measurements: a review. Atmospheric Environment 77, 78-97.
Pant, P., Shi, Z., Pope, F.D., Harrison, R.M., 2017. Characterization of traffic-related particulate matter emissions in a road tunnel in Birmingham, UK: Trace metals and organic molecular markers. Aerosol Air Qual. Res 17, 117-130.
Park, J.-S., Schauer, J.J., Shafer, M.M., Chowdhury, Z., Cass, G.R., Wagner, D., Sarofim, A.F., Lighty, J., 2001. Analysis of source apportionment tracers in fine particulate matter emitted from the combustion of coal, Abstr Papers Am Chem Soc.
Peng, X., Shi, G.-L., Zheng, J., Liu, J.-Y., Shi, X.-R., Xu, J., Feng, Y.-C., 2016. Influence of quarry mining dust on PM2. 5 in a city adjacent to a limestone quarry: Seasonal characteristics and source contributions. Science of the Total Environment 550, 940-949.
Penner, J.E., Novakov, T., 1996. Carbonaceous particles in the atmosphere: A historical perspective to the Fifth International Conference on Carbonaceous Particles in the Atmosphere. Journal of Geophysical Research: Atmospheres 101, 19373-19378.
Pey, J., Pérez, N., Castillo, S., Viana, M., Moreno, T., Pandolfi, M., López-Sebastián, J., Alastuey, A., Querol, X., 2009. Geochemistry of regional background aerosols in the Western Mediterranean. Atmospheric Research 94, 422-435.
Pey, J., Querol, X., Alastuey, A., 2010. Discriminating the regional and urban contributions in the North-Western Mediterranean: PM levels and composition. Atmospheric Environment 44, 1587-1596.
Pio, C., Mirante, F., Oliveira, C., Matos, M., Caseiro, A., Oliveira, C., Querol, X., Alves, C., Martins, N., Cerqueira, M., 2013. Size-segregated chemical composition of aerosol emissions in an urban road tunnel in Portugal. Atmospheric environment 71, 15-25.
Pio, C.A., Castro, L.M., Cerqueira, M.A., Santos, I.M., Belchior, F., Salgueiro, M.L., 1996. Source assessment of particulate air pollutants measured at the southwest European coast. Atmospheric Environment 30, 3309-3320.
Polissar, A.V., Hopke, P.K., Poirot, R.L., 2001. Atmospheric aerosol over Vermont: chemical composition and sources. Environmental science & technology 35, 4604-4621.
Pope III, C.A., Dockery, D.W., 2006. Health effects of fine particulate air pollution: lines that connect. Journal of the air & waste management association 56, 709-742.
Pope III, C.A., Ezzati, M., Dockery, D.W., 2013. Fine particulate air pollution and life expectancies in the United States: the role of influential observations. Journal of the air & waste management association 63, 129-132.
Power, A., Tennant, R.K., Jones, R.T., Tang, Y., Du, J., Worsley, A.T., Love, J., 2018. Monitoring Impacts of Urbanisation and Industrialisation on Air Quality in the Anthropocene Using Urban Pond Sediments.
Prati, P., Zucchiatti, A., Lucarelli, F., Mando, P., 2000. Source apportionment near a steel plant in Genoa (Italy) by continuous aerosol sampling and PIXE analysis. Atmospheric Environment 34, 3149-3157.
Prodi, F., Belosi, F., Contini, D., Santachiara, G., Di Matteo, L., Gambaro, A., Donateo, A., Cesari, D., 2009. Aerosol fine fraction in the Venice Lagoon: particle composition and sources. Atmospheric Research 92, 141-150.
Putaud, J.-P., Raes, F., Van Dingenen, R., Brüggemann, E., Facchini, M.-C., Decesari, S., Fuzzi, S., Gehrig, R., Hüglin, C., Laj, P., 2004. A European aerosol phenomenology—2: chemical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe. Atmospheric environment 38, 2579-2595.
Qin, Y., Chan, C.K., Chan, L., 1997. Characteristics of chemical compositions of atmospheric aerosols in Hong Kong: spatial and seasonal distributions. Science of the Total Environment 206, 25-37.
Quan, J., Zhang, X., Zhang, Q., Guo, J., Vogt, R.D., 2008. Importance of sulfate emission to sulfur deposition at urban and rural sites in China. Atmospheric Research 89, 283-288.
Querol, X., Alastuey, A., López-Soler, A., Boix, A., Sanfeliu, T., Martynov, V., Piven, P., Kabina, L., Souschov, P., 1997. Trace element contents in atmospheric suspended particles: inferences from instrumental neutron activation analysis. Fresenius′ journal of analytical chemistry 357, 934-940.
Querol, X., Alastuey, A., Pey, J., Cusack, M., Pérez, N., Mihalopoulos, N., Theodosi, C., Gerasopoulos, E., Kubilay, N., Koçak, M., 2009. Variability in regional background aerosols within the Mediterranean. Atmospheric Chemistry and Physics 9, 4575-4591.
Querol, X., Alastuey, A., Rodriguez, S., Plana, F., Mantilla, E., Ruiz, C.R., 2001. Monitoring of PM10 and PM2. 5 around primary particulate anthropogenic emission sources. Atmospheric Environment 35, 845-858.
Querol, X., Umana, J.C., Alastuey, A., Bertrana, C., Lopez-Soler, A., Plana, F., 1999. Physicochemical characterization of Spanish fly ashes. Energy Sources 21, 883-898.
Querol, X., Viana, M., Alastuey, A., Amato, F., Moreno, T., Castillo, S., Pey, J., De la Rosa, J., De La Campa, A.S., Artíñano, B., 2007a. Source origin of trace elements in PM from regional background, urban and industrial sites of Spain. Atmospheric Environment 41, 7219-7231.
Querol, X., Viana, M., Alastuey, A., Amato, F., Moreno, T., Castillo, S., Pey, J., de la Rosa, J., Sánchez de la Campa, A., Artíñano, B., Salvador, P., García Dos Santos, S., Fernández-Patier, R., Moreno-Grau, S., Negral, L., Minguillón, M.C., Monfort, E., Gil, J.I., Inza, A., Ortega, L.A., Santamaría, J.M., Zabalza, J., 2007b. Source origin of trace elements in PM from regional background, urban and industrial sites of Spain. Atmospheric Environment 41, 7219-7231.
Querol, X., Zhuang, X., Alastuey, A., Viana, M., Lv, W., Wang, Y., López, A., Zhu, Z., Wei, H., Xu, S., 2006. Speciation and sources of atmospheric aerosols in a highly industrialised emerging mega-city in Central China. Journal of Environmental Monitoring 8, 1049-1059.
Rahn, K.A., 1999. A graphical technique for determining major components in a mixed aerosol. I. Descriptive aspects. Atmospheric Environment 33, 1441-1455.
Ramacher, M.O.P., Karl, M., Aulinger, A., Bieser, J., Matthias, V., Quante, M., 2016. The impact of emissions from ships in ports on regional and urban scale air quality, International Technical Meeting on Air Pollution Modelling and its Application. Springer, pp. 309-316.
Ramacher, M.O.P., Karl, M., Bieser, J., Jalkanen, J.-P., Johansson, L., 2019. Urban population exposure to NOX emissions from local shipping in three Baltic Sea harbour cities–a generic approach.
Reff, A., Bhave, P.V., Simon, H., Pace, T.G., Pouliot, G.A., Mobley, J.D., Houyoux, M., 2009. Emissions inventory of PM2. 5 trace elements across the United States. Environmental science & technology 43, 5790-5796.
Reff, A., Eberly, S.I., Bhave, P.V., 2007. Receptor modeling of ambient particulate matter data using positive matrix factorization: review of existing methods. Journal of the Air & Waste Management Association 57, 146-154.
Requia, W.J., Adams, M.D., Koutrakis, P., 2017. Association of PM2. 5 with diabetes, asthma, and high blood pressure incidence in Canada: A spatiotemporal analysis of the impacts of the energy generation and fuel sales. Science of the Total Environment 584, 1077-1083.
Riffault, V., Arndt, J., Marris, H., Mbengue, S., Setyan, A., Alleman, L.Y., Deboudt, K., Flament, P., Augustin, P., Delbarre, H., 2015. Fine and ultrafine particles in the vicinity of industrial activities: a review. Critical Reviews in Environmental Science and Technology 45, 2305-2356.
Robinson, R.J., Knapman, F.W., 1941. The sodium-chlorinity ratio of ocean waters from the Northeast Pacific. University of Washington.
Rosenthal, F., Carney, J., Olinger, M., 2008. Increased Risk of Out-of-Hospital Cardiac Arrest is Associated with Short-Term PM2. 5 Exposure. Epidemiology 19, S91.
Rossini, P., Matteucci, G., Guerzoni, S., 2010. Atmospheric fall-out of metals around the Murano glass-making district (Venice, Italy). Environmental Science and Pollution Research 17, 40-48.
Rovira, J., Sierra, J., Nadal, M., Schuhmacher, M., Domingo, J.L., 2018. Main components of PM 10 in an area influenced by a cement plant in Catalonia, Spain: Seasonal and daily variations. Environmental research 165, 201-209.
Rudnick, R., Gao, S., 2004. Composition of the Continental Crust. University of Maryland, College Park, MD, USA.
Rudnick, R.L., Holland, H.D., Turekian, K.K., 2005. The crust. Elsevier.
Salameh, D., Detournay, A., Pey, J., Pérez, N., Liguori, F., Saraga, D., Bove, M.C., Brotto, P., Cassola, F., Massabò, D., 2015. PM2. 5 chemical composition in five European Mediterranean cities: a 1-year study. Atmospheric Research 155, 102-117.
Samara, C., Kouimtzis, T., Tsitouridou, R., Kanias, G., Simeonov, V., 2003. Chemical mass balance source apportionment of PM10 in an industrialized urban area of Northern Greece. Atmospheric environment 37, 41-54.
Sanderson, P., Delgado-Saborit, J.M., Harrison, R.M., 2014. A review of chemical and physical characterisation of atmospheric metallic nanoparticles. Atmospheric Environment 94, 353-365.
Santacatalina, M., Reche, C., Minguillón, M., Escrig, A., Sanfelix, V., Carratalá, A., Nicolás, J., Yubero, E., Crespo, J., Alastuey, A., 2010. Impact of fugitive emissions in ambient PM levels and composition: A case study in Southeast Spain. Science of the total environment 408, 4999-5009.
Schauer, J.J., Lough, G.C., Shafer, M.M., Christensen, W.F., Arndt, M.F., DeMinter, J.T., Park, J., 2006. Characterization of metals emitted from motor vehicles. Research report (Health Effects Institute), 1-76; discussion 77-88.
Seinfeld, J., Pandis, S., 1998. Atmospheric chemistry and physics: from air pollution to climate change Wiley 1326.
Seinfeld, J.H., Pandis, S.N., 2012. Atmospheric chemistry and physics: from air pollution to climate change. John Wiley & Sons.
Setyan, A., Flament, P., Locoge, N., Deboudt, K., Riffault, V., Alleman, L.Y., Schoemaecker, C., Arndt, J., Augustin, P., Healy, R.M., 2019. Investigation on the near-field evolution of industrial plumes from metalworking activities. Science of The Total Environment 668, 443-456.
Shafer, M.M., Toner, B.M., Overdier, J.T., Schauer, J.J., Fakra, S.C., Hu, S., Herner, J.D., Ayala, A., 2011. Chemical speciation of vanadium in particulate matter emitted from diesel vehicles and urban atmospheric aerosols. Environmental science & technology 46, 189-195.
Shimada, K., Shimada, M., Takami, A., Hasegawa, S., Fushimi, A., Arakaki, T., Izumi, W., Hatakeyama, S., 2015. Mode and place of origin of carbonaceous aerosols transported from East Asia to Cape Hedo, Okinawa, Japan. Aerosol Air Qual. Res 15, 799-813.
Shimadera, H., Kondo, A., Kaga, A., Shrestha, K.L., Inoue, Y., 2009. Contribution of transboundary air pollution to ionic concentrations in fog in the Kinki Region of Japan. Atmospheric Environment 43, 5894-5907.
Shimohara, T., Oishi, O., Utsunomiya, A., Mukai, H., Hatakeyama, S., Eun-Suk, J., Uno, I., Murano, K., 2001. Characterization of atmospheric air pollutants at two sites in northern Kyushu, Japan–chemical form, and chemical reaction. Atmospheric Environment 35, 667-681.
Silva, P.J., Prather, K.A., 1997. On-line characterization of individual particles from automobile emissions. Environmental science & technology 31, 3074-3080.
Smolka-Danielowska, D., 2010. Rare earth elements in fly ashes created during the coal burning process in certain coal-fired power plants operating in Poland–Upper Silesian Industrial Region. Journal of environmental radioactivity 101, 965-968.
Song, X.-H., Polissar, A.V., Hopke, P.K., 2001. Sources of fine particle composition in the northeastern US. Atmospheric Environment 35, 5277-5286.
Speight, J.G., 2014. The chemistry and technology of petroleum. CRC press.
Sternbeck, J., Sjödin, Å., Andréasson, K., 2002. Metal emissions from road traffic and the influence of resuspension—results from two tunnel studies. Atmospheric Environment 36, 4735-4744.
Stojić, A., Stojić, S.S., Mijić, Z., Šoštarić, A., Rajšić, S., 2015. Spatio-temporal distribution of VOC emissions in urban area based on receptor modeling. Atmospheric Environment 106, 71-79.
Sugawara, K., 1958. Strontium and calcium distribution in western Pacific, Indian and Antarctic Ocean. Rec. Oceanogr. Works Japan 2, 227-242.
Sun, G., Li, Z., Liu, T., Chen, J., Wu, T., Feng, X., 2017. Rare earth elements in street dust and associated health risk in a municipal industrial base of central China. Environmental geochemistry and health 39, 1469-1486.
Sun, Y., Zhuang, G., Wang, Y., Han, L., Guo, J., Dan, M., Zhang, W., Wang, Z., Hao, Z., 2004. The air-borne particulate pollution in Beijing—concentration, composition, distribution and sources. Atmospheric Environment 38, 5991-6004.
Suzuki, Y., Suzuki, T., Furuta, N., 2010. Determination of rare earth elements (REEs) in airborne particulate matter (APM) collected in Tokyo, Japan, and a positive anomaly of europium and terbium. Analytical Sciences 26, 929-935.
Sweet, C.W., Vermette, S.J., Landsberger, S., 1993. Sources of toxic trace elements in urban air in Illinois. Environmental Science & Technology 27, 2502-2510.
Taiwo, A., Beddows, D., Calzolai, G., Harrison, R.M., Lucarelli, F., Nava, S., Shi, Z., Valli, G., Vecchi, R., 2014. Receptor modelling of airborne particulate matter in the vicinity of a major steelworks site. Science of the Total Environment 490, 488-500.
Takemura, T., Nakajima, T., Higurashi, A., Ohta, S., Sugimoto, N., 2003. Aerosol distributions and radiative forcing over the Asian Pacific region simulated by Spectral Radiation‐Transport Model for Aerosol Species (SPRINTARS). Journal of Geophysical Research: Atmospheres 108.
Tang, I.N., Munkelwitz, H.R., 1993. Composition and temperature dependence of the deliquescence properties of hygroscopic aerosols. Atmospheric Environment. Part A. General Topics 27, 467-473.
Taniguchi, Y., Shimada, K., Takami, A., Lin, N.-H., Chan, C.K., Kim, Y.P., Hatakeyama, S., 2017. Transboundary and local air pollutants in western Japan distinguished on the basis of ratios of metallic elements in size-segregated aerosols. Aerosol Air Qual. Res 17, 3141-3150.
Tao, J., Gao, J., Zhang, L., Zhang, R., Che, H., Zhang, Z., Lin, Z., Jing, J., Cao, J., Hsu, S.-C., 2014. PM 2.5 pollution in a megacity of southwest China: source apportionment and implication. Atmospheric Chemistry and Physics 14, 8679-8699.
Taylor, S., 1964. Abundance of chemical elements in the continental crust: a new table. Geochimica et cosmochimica acta 28, 1273-1285.
TaylorSR, M., 1985. Thecontinentalcrust: its compositionandevolution. UnitedStates: BlackwellScientific Publications, 1-328.
Tchounwou, P.B., Yedjou, C.G., Patlolla, A.K., Sutton, D.J., 2012. Heavy metal toxicity and the environment, Molecular, clinical and environmental toxicology. Springer, pp. 133-164.
Thorpe, A., Harrison, R.M., 2008. Sources and properties of non-exhaust particulate matter from road traffic: a review. Science of the total environment 400, 270-282.
Tian, H., Wang, Y., Xue, Z., Cheng, K., Qu, Y., Chai, F., Hao, J., 2010. Trend and characteristics of atmospheric emissions of Hg, As, and Se from coal combustion in China, 1980–2007. Atmospheric Chemistry and Physics 10, 11905-11919.
Tie, X., Long, X., Dai, W., Brasseur, G.P., 2017. Surface PM2. 5, Satellite Distribution of Atmospheric Optical Depth and Related Effects on Crop Production in China, Air Pollution in Eastern Asia: An Integrated Perspective. Springer, pp. 479-488.
Tillett, T., 2012. Hearts over time: cardiovascular mortality risk linked to long-term PM2. 5 exposure. Environmental health perspectives 120, a205.
Titos, G., Del Águila, A., Cazorla, A., Lyamani, H., Casquero-Vera, J., Colombi, C., Cuccia, E., Gianelle, V., Močnik, G., Alastuey, A., 2017. Spatial and temporal variability of carbonaceous aerosols: assessing the impact of biomass burning in the urban environment. Science of the Total Environment 578, 613-625.
Titos, G., Jefferson, A., Sheridan, P., Andrews, E., Lyamani, H., Alados-Arboledas, L., Ogren, J., 2014. Aerosol light-scattering enhancement due to water uptake during the TCAP campaign. Atmospheric Chemistry and Physics 14, 7031-7043.
Tsai, H.-H., Yuan, C.-S., Hung, C.-H., Lin, Y.-C., 2010. Comparing physicochemical properties of ambient particulate matter of hot spots in a highly polluted air quality zone. Aerosol Air Qual. Res 10, 331-344.
Tunno, B.J., Dalton, R., Cambal, L., Holguin, F., Lioy, P., Clougherty, J.E., 2016a. Indoor source apportionment in urban communities near industrial sites. Atmospheric environment 139, 30-36.
Tunno, B.J., Dalton, R., Michanowicz, D.R., Shmool, J.L., Kinnee, E., Tripathy, S., Cambal, L., Clougherty, J.E., 2016b. Spatial patterning in PM 2.5 constituents under an inversion-focused sampling design across an urban area of complex terrain. Journal of Exposure Science and Environmental Epidemiology 26, 385.
Uberoi, M., Shadman, F., 1991. High-temperature removal of cadmium compounds using solid sorbents. Environmental science & technology 25, 1285-1289.
Upadhyay, N., Clements, A., Fraser, M., Herckes, P., 2011. Chemical speciation of PM2. 5 and PM10 in South Phoenix, AZ. Journal of the Air & Waste Management Association 61, 302-310.
Uria-Tellaetxe, I., Carslaw, D.C., 2014. Conditional bivariate probability function for source identification. Environmental modelling & software 59, 1-9.
Uysal, I.T., Golding, S.D., 2003. Rare earth element fractionation in authigenic illite–smectite from Late Permian clastic rocks, Bowen Basin, Australia: implications for physico-chemical environments of fluids during illitization. Chemical Geology 193, 167-179.
Viana, M., Amato, F., Alastuey, A.s., Querol, X., Moreno, T., García Dos Santos, S.l., Herce, M.D., Fernández-Patier, R., 2009. Chemical tracers of particulate emissions from commercial shipping. Environmental science & technology 43, 7472-7477.
Viana, M., Fann, N., Tobías, A., Querol, X., Rojas-Rueda, D., Plaza, A., Aynos, G., Conde, J., Fernández, L., Fernández, C., 2015. Environmental and health benefits from designating the marmara sea and the Turkish straits as an emission control area (ECA). Environmental science & technology 49, 3304-3313.
Viana, M., Hammingh, P., Colette, A., Querol, X., Degraeuwe, B., de Vlieger, I., van Aardenne, J., 2014. Impact of maritime transport emissions on coastal air quality in Europe. Atmospheric Environment 90, 96-105.
Viana, M., Kuhlbusch, T., Querol, X., Alastuey, A., Harrison, R., Hopke, P., Winiwarter, W., Vallius, M., Szidat, S., Prévôt, A., 2008. Source apportionment of particulate matter in Europe: a review of methods and results. Journal of aerosol science 39, 827-849.
Viana, M., Reche, C., Amato, F., Alastuey, A., Querol, X., Moreno, T., Lucarelli, F., Nava, S., Calzolai, G., Chiari, M., 2013. Evidence of biomass burning aerosols in the Barcelona urban environment during winter time. Atmospheric environment 72, 81-88.
Vicente, E., Duarte, M., Tarelho, L., Nunes, T., Amato, F., Querol, X., Colombi, C., Gianelle, V., Alves, C., 2015. Particulate and gaseous emissions from the combustion of different biofuels in a pellet stove. Atmospheric Environment 120, 15-27.
VOIPIO, A., 1959. On the alkaline-earth metal and magnesium contents of sea water.
Voutsa, D., Samara, C., Kouimtzis, T., Ochsenkühn, K., 2002. Elemental composition of airborne particulate matter in the multi-impacted urban area of Thessaloniki, Greece. Atmospheric Environment 36, 4453-4462.
Wang, C.-C., Lee, C.-T., Liu, S.C., Chen, J.-P., 2004. Aerosol characterization at Taiwan’s tip during ACE-Asia. Terrestrial.
Wang, C., Zhu, W., Peng, A., Guichreit, R., 2001a. Comparative studies on the concentration of rare earth elements and heavy metals in the atmospheric particulate matter in Beijing, China, and in Delft, the Netherlands. Environment international 26, 309-313.
Wang, C., Zhu, W., Wang, Z., Guicherit, R., 2000. Rare earth elements and other metals in atmospheric particulate matter in the western part of the Netherlands. Water, air, and soil pollution 121, 109-118.
Wang, G., Zhang, R., Gomez, M.E., Yang, L., Zamora, M.L., Hu, M., Lin, Y., Peng, J., Guo, S., Meng, J., 2016. Persistent sulfate formation from London Fog to Chinese haze. Proceedings of the National Academy of Sciences 113, 13630-13635.
Wang, Q., Qiao, L., Zhou, M., Zhu, S., Griffith, S., Li, L., Yu, J.Z., 2018. Source Apportionment of PM2. 5 Using Hourly Measurements of Elemental Tracers and Major Constituents in an Urban Environment: Investigation of Time‐Resolution Influence. Journal of Geophysical Research: Atmospheres 123, 5284-5300.
Wang, S., Yu, R., Hu, G., Hu, Q., Zheng, Q., 2017. Distribution and source of rare earth elements in PM2. 5 in Xiamen, China. Environmental toxicology and chemistry 36, 3217-3222.
Wang, Y., Zhuang, G., Tang, A., Yuan, H., Sun, Y., Chen, S., Zheng, A., 2005. The ion chemistry and the source of PM2. 5 aerosol in Beijing. Atmospheric Environment 39, 3771-3784.
Wang, Z., Wang, C., Lu, P., Zhu, W., 2001b. Concentrations and flux of rare earth elements in a semifield plot as influenced by their agricultural application. Biological trace element research 84, 213-226.
Watson, J.G., Chow, J.C., Houck, J.E., 2001. PM2. 5 chemical source profiles for vehicle exhaust, vegetative burning, geological material, and coal burning in Northwestern Colorado during 1995. Chemosphere 43, 1141-1151.
Webb, D., 1939. The sodium and potassium content of sea water. Journal of Experimental Biology 16, 178-183.
Weckwerth, G., 2001. Verification of traffic emitted aerosol components in the ambient air of Cologne (Germany). Atmospheric environment 35, 5525-5536.
Wen, J., Wang, X., Zhang, Y., Zhu, H., Chen, Q., Tian, Y., Shi, X., Shi, G., Feng, Y., 2018. PM2. 5 source profiles and relative heavy metal risk of ship emissions: Source samples from diverse ships, engines, and navigation processes. Atmospheric Environment 191, 55-63.
Wild, R.J., Dubé, W.P., Aikin, K.C., Eilerman, S.J., Neuman, J.A., Peischl, J., Ryerson, T.B., Brown, S.S., 2017. On-road measurements of vehicle NO2/NOx emission ratios in Denver, Colorado, USA. Atmospheric Environment 148, 182-189.
Wiseman, C.L., Pour, Z.H., Zereini, F., 2016. Platinum group element and cerium concentrations in roadside environments in Toronto, Canada. Chemosphere 145, 61-67.
Wongphatarakul, V., Friedlander, S., Pinto, J., 1998. A comparative study of PM2. 5 ambient aerosol chemical databases. Environmental Science & Technology 32, 3926-3934.
Wu, P.-M., Okada, K., 1994. Nature of coarse nitrate particles in the atmosphere—a single particle approach. Atmospheric Environment 28, 2053-2060.
Wu, Y.-S., Fang, G.-C., Lee, W.-J., Lee, J.-F., Chang, C.-C., Lee, C.-Z., 2007. A review of atmospheric fine particulate matter and its associated trace metal pollutants in Asian countries during the period 1995–2005. Journal of hazardous materials 143, 511-515.
Xie, R., Seip, H.M., Wibetoe, G., Nori, S., McLeod, C.W., 2006. Heavy coal combustion as the dominant source of particulate pollution in Taiyuan, China, corroborated by high concentrations of arsenic and selenium in PM10. Science of the total environment 370, 409-415.
Xu, L., Chen, X., Chen, J., Zhang, F., He, C., Zhao, J., Yin, L., 2012. Seasonal variations and chemical compositions of PM2. 5 aerosol in the urban area of Fuzhou, China. Atmospheric Research 104, 264-272.
Yan, R., Lu, X., Zeng, H., 1999. Trace elements in Chinese coals and their partitioning during coal combustion. Combustion science and technology 145, 57-81.
Yang, H.-H., Lee, K.-T., Hsieh, Y.-S., Luo, S.-W., Li, M.-S., 2014. Filterable and condensable fine particulate emissions from stationary sources. Aerosol and Air Quality Research 14, 2010-2016.
Yatkin, S., Bayram, A., 2008. Source apportionment of PM10 and PM2. 5 using positive matrix factorization and chemical mass balance in Izmir, Turkey. Science of the total environment 390, 109-123.
Yongming, H., Peixuan, D., Junji, C., Posmentier, E.S., 2006. Multivariate analysis of heavy metal contamination in urban dusts of Xi′an, Central China. Science of the total environment 355, 176-186.
Yu, X., Ma, J., Kumar, K.R., Zhu, B., An, J., He, J., Li, M., 2016. Measurement and analysis of surface aerosol optical properties over urban Nanjing in the Chinese Yangtze River Delta. Science of the Total Environment 542, 277-291.
Yujue, W., Min, H., Yu, W., Yanhong, Q., Hongyang, C., Limin, Z., Jianrong, L., Xiaofeng, H., Lingyan, H., Ruiqin, Z., 2016. Characterization and influence factors of PM2. 5 emitted from crop straw burning. ACTA CHIMICA SINICA 74, 356-362.
Zhang, J., Wu, L., Fang, X., Li, F., Yang, Z., Wang, T., Mao, H., Wei, E., 2018. Elemental composition and health risk assessment of PM10 and PM2. 5 in the roadside microenvironment in Tianjin, China. Aerosol and Air Quality Research 18, 1817-1827.
Zhang, L., Liu, Y., Hao, L., 2016. Contributions of open crop straw burning emissions to PM2. 5 concentrations in China. Environmental Research Letters 11, 014014.
Zhang, R., Jing, J., Tao, J., Hsu, S.-C., Wang, G., Cao, J., Lee, C.S.L., Zhu, L., Chen, Z., Zhao, Y., 2013a. Chemical characterization and source apportionment of PM 2.5 in Beijing: seasonal perspective. Atmospheric Chemistry and Physics 13, 7053-7074.
Zhang, X., Chen, W., Ma, C., Zhan, S., 2013b. Modeling particulate matter emissions during mineral loading process under weak wind simulation. Science of the total environment 449, 168-173.
Zhang, Y., Jiang, Z., He, M., Hu, B., 2007. Determination of trace rare earth elements in coal fly ash and atmospheric particulates by electrothermal vaporization inductively coupled plasma mass spectrometry with slurry sampling. Environmental pollution 148, 459-467.
Zhao, L., Zhang, F.-S., Zhang, J., 2008. Chemical properties of rare earth elements in typical medical waste incinerator ashes in China. Journal of hazardous materials 158, 465-470.
Zhao, M., Zhang, Y., Ma, W., Fu, Q., Yang, X., Li, C., Zhou, B., Yu, Q., Chen, L., 2013. Characteristics and ship traffic source identification of air pollutants in China′s largest port. Atmospheric environment 64, 277-286.
Zhao, Y., Gao, Y., 2008. Acidic species and chloride depletion in coarse aerosol particles in the US east coast. Science of the total Environment 407, 541-547.
Zhao, Y., Yang, J., Ma, S., Zhang, S., Liu, H., Gong, B., Zhang, J., Zheng, C., 2018. Emission controls of mercury and other trace elements during coal combustion in China: a review. International Geology Review 60, 638-670.
Zwozdziak, A., Gini, M.I., Samek, L., Rogula-Kozlowska, W., Sowka, I., Eleftheriadis, K., 2017. Implications of the aerosol size distribution modal structure of trace and major elements on human exposure, inhaled dose and relevance to the PM2. 5 and PM10 metrics in a European pollution hotspot urban area. Journal of Aerosol Science 103, 38-52.
中央研究院環境變遷研究中心,2014.懸浮微粒污染源特徵指標技術之建置與評析研究案,行政院環境保護署環境檢驗所,EPA-103-1602-02-06.
王偉, 2017. 2015-2016年台灣都會區細懸浮微粒(PM2.5)成分濃度變化、污染來源推估. 國立中央大學環境工程研究所碩士論文.
李崇德, 周崇光, 張士昱, 蕭大智, 2016. 104-105年細懸浮微粒(PM2.5)化學成分監測專案工作計畫. 環保署EPA-104-L102-02-103,台北,105年12月.
林乃芸, 2019. 2015-2017年台灣都會區細懸浮微粒(PM2.5)元素成分濃度時間及空間變化. 國立中央大學環境工程研究所碩士論文.
何怡慧, 2019. 2017年台灣細懸浮微粒(PM2.5)污染來源推估及化學成分特性變化. 國立中央大學環境工程研究所碩士論文.
吳沛愉,2014. 鋼鐵業煙道排放粒狀物之物化指紋特徵分析。國立中山大學環境工程研究所碩士論文.
周崇光;林煜棋;林順信;練建國;陳馥韻;黃譯樘;胡淑娟;黃昭豪, 103年12月. 懸浮微粒污染源特徵指標技術之建置與評析(2014). EPA-103-1602-02-06.
周崇光, 106年12月. 「細懸浮微粒碳及鉛同位素分析技術發展與應用計畫」專案工作計畫(2017).EPA-105-U101-02-A272.
許家綺, 2015. 2011-2015 年台灣都會區細懸浮微粒(PM2.5)成分濃度變化, 污染來源推估及對能見度影響. 國立中央大學.
魏海青, 2014. 台灣北、中、南部細懸浮微粒(PM2.5)儀器比對成分分析與來源推估; Fine suspended particles (PM2.5)instrument comparison, component analysis and source apportionment in northern, central, and southern Taiwan. 國立中央大學.
羅鈞;鄭玟芩;陳怡伶, 2018. 我國固定污染源細懸浮微粒(PM2.5)排放特性之研究分析. 國立中山大學環境工程研究所碩士論文.
指導教授 李崇德 審核日期 2019-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明