參考文獻 |
1. 田永銘、盧育辰、許哲睿、鄭華恩、法麗佳,「裂隙岩體幾何與力學表徵單元體積及其力學性質」,科技部專題研究計畫期末報告,MOST 105-2221-E-008-026(2017)。
2. 田永銘、盧育辰、劉家豪、吳柏翰,「以合成岩體模式決定表徵單元體尺寸(Ⅱ、Ⅲ)」,科技部專題研究計畫期中報告,MOST 107-2221-E-008-020-MY2 (2019)。
3. 法麗佳,「針對裂隙岩體裂隙程度(P32)與水利傳導係數之表徵單元體積(REV)進行探討」,碩士論文,國立中央大學土木工程學系,中壢(2017)。
4. 許哲睿,「岩體裂隙程度與力學性質之不確定性」,碩士論文,國立中央大學土木工程學系,中壢(2017)。
5. 郭明傳,「複合岩體之岩塊體積比量測及其力學行為」,博士論文,國立中央大學土木工程學系,中壢(2005)。
6. 曾禹昕,「裂隙岩體水力傳導隙數之不確定性」,碩士論文,國立中央大學土木工程學系,中壢(2019)。
7. 劉文智,「以數值模擬層狀岩石巴西試驗」,碩士論文,國立中央大學土木工程學系,中壢(2013)。
8. 鄭華恩,「以合成岩體探討裂隙岩體的力學行為」,碩士論文,國立中央大學土木工程學系,中壢(2019)。
9. 鄭華恩、田永銘、盧育辰、劉家豪、吳柏翰,「以合成岩體探討裂隙岩體的力學行為」,第十四屆岩盤工程研討會,國立成功大學,台南(2018)。
10. Amadei, B., “Important of anisotropy when estimating and measuring in situ stress in rock,” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 33, pp. 293-325 (1996).
11. Amadei, B., Influence of Rock Anisotropy on Stress Measurements by Overcoring Techniques, Rock Anisotropy and the Theory of Stress Measurements, Springer, Berlin, Heidelberg, pp. 189-241(1983).
12. Bieniawski, Z.T., “Mechanism of brittle fracture of rock: Part II—experimental studies,” Int J Rock Mech Min Sci, Vol. 4, pp. 407-423 (1967).
13. Bieniawski, Z.T., Rock mechanics design in mining and tunneling. A.A., Balkema, Rotterdam (1984).
14. Cho, J.W., Kim, H., Jeon, S., and Min, K.B., “Deformation and strength anisotropy of Asan gneiss, Boryeong shale, and Yeoncheon schist,” International Journal of Rock Mechanics & Mining Sciences, Vol. 50, pp.158-169 (2012).
15. Deere, D.U. and Miller, R.P., “ Engineering classification and index properties of intact rock, ”Air Force Laboratory Technical Report No.AFNL-TR-65-116, Albuquerque, NM. (1966).
16. Dershowitz, W.S.“Rock joint system”Ph.D. Dissertation, MIT, Cambridge, Mass (1985).
17. Dershowitz, W.S., and Einstein, H.H.,“Characterizing rock joint geometry with joint system models,”Journal of Rock Mechanics and Rock Engineering, Vol. 21, pp. 21-51 (1988).
18. Dershowitz, W.S., and Herda, H.H.,“Interpretation of Fracture Spacing and Intensity,”The 33th U.S. Symposium on Rock Mechanics, Santa Fe, New Mexico (1992).
19. Duan, K., and Kwok, C.Y., “Discrete element modeling of anisotropic rock under Brazilian test conditions,” Int J Rock Mech Min Sci, Vol. 78, pp. 45-56 (2015).
20. Elmo, D., Rogers, S., Stead, D., and Eberhardt, E., “Discrete Fracture Network approach to characterise rock mass fragmentation and implications for geomechanical upscaling,” Mining Technology, Vol.123(3), pp. 149-161 (2014).
21. Esmaieli, K., Hadjigeorgiou, J., and Grenon, M., “Estimating geometrical and mechanical REV based on synthetic rock mass models at Brunswick Mine,” Int J Rock Mech Min Sci, Vol. 47, pp. 915-926 (2010).
22. Farichah, Himatul, Hsu, C.J., and Tien, Y.M., “A novel equation to determine geometrical representative elementary volume of fractured rock mass,” The 51st U.S. Rock Mechanics Symposium, San Francisco, USA (2017).
23. H"U" ̈rlimann, W., Splitting risk and premium calculation, Bulletin of the Swiss Association of Actuaries, pp. 229-249 (1994).
24. Hoek, E., and Brown, E.T., “The Hoek–Brown failure criterion—a 1988 update,” In: Curran J (ed) Proceedings of the 15th Canadian Rock Mechanics Symposium, University of Toronto, pp 31-38 (1988).
25. Hoek, E., and Brown, E.T., Underground Excavations in Rock, Taylor & Francis Group, United States of America (1980).
26. Itasca Consulting Group Inc. PFC3D(particle flow code in 3 dimensions), Version 5.0, MN 55401 (2013).
27. Ivars, D.M., Pierce, M.E., Darcel, C., “Anisotropy and scale dependency in jointed rock mass strength – A Synthetic Rock Mass Study,” In Proceedings of the 1st International FLAC/DEM Symposium on Numerical Modeling, pp. 231-239 (2008).
28. Ivars, D.M., Pierce, M.E., Darcel, C., Reyes-Montes, J., Potyondy, D.O., Young, R.P., and Cundall, P.A., “The synthetic rock mass approach for jointed rock mass modelling,” Int J Rock Mech Min Sci, Vol. 48, pp. 219-244 (2011).
29. Jaeger, J.C., “Shear failure of anistropic rocks,” Geol Mag, Vol. 97(1) pp. 65-72 (1960).
30. Liu, W.C., Tien, Y.M., Juang, C.H., and Lin, J. S., “Numerical investigation of crack propagation and failure mechanism of layered rocks,” 47th U.S. Rock Mechanics / Geomechanics Symposium, San Francisco, USA, 23–26 June 2013 .Paper No. 13-673 (2013).
31. Lu, Y.C., “Uncertainties of geometrical and mechanical properties of heterogeneous media and discontinuous rock masses,” Ph.D. Dissertation, Dept. of Civil Engineering, National Central University, Taoyuan, Taiwan (2018).
32. Pierce, M., Ivars, D.M., and Sainsbury, B., “Use of Synthetic Rock Masses (SRM) to Investigate Jointed Rock Mass Strength and Deformation Behavior,” In Anonymous proceedings of the international conference on rock joints and jointed rock masses, Tucson, Arizona, USA. (2009).
33. Pierce, M., Mas Ivars, D., Cundall, P.A. and Potyondy, D.O., “A Synthetic Rock Mass Model for Jointed Rock,” Rock Mechanics: Meeting Society′s Challenges and Demands (1st Canada-U.S. Rock Mechanics Symposium, Vancouver, Canada, pp. 341-349 (2007).
34. Potyondy, D.O., “Simulating spalling, phase II: feasibility assessment,” Itasca Consulting Group Report to Svensk Karnbranslehantering AB (SKB), Stock- holm, Sweden, ICG09-2502-3F; January (2009).
35. Potyondy, D.O., and Cundall, P.A., “A bonded-particle model for rock,” Int J Rock Mech Min Sci, Vol. 41(8), pp. 1329-1364 (2004).
36. Ramamurthy, T.,“Strength and modulus responses of anisotropic rocks, ”In Comprehensive Rock Engineering, Vol. 1. Fundamentals, Pergamon Press, Oxford, pp.313-329 (1993).
37. Tien, Y.M., and Kuo, M.C., “A failure criterion for transversely isotropic rocks,” Int J Rock Mech Min Sci, Vol. 38(3), pp. 399-412(2001).
38. Tien, Y.M., Kuo, M. C., and Lu, Y.C., “Chapter 16: Failure criteria for transversely isotropic rock,” Rock Mechanics and Engineering, Volume 1: Principles, Ed. Feng, X.T., CRC Press, London, pp. 451-477(2016). |