博碩士論文 106223061 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:83 、訪客IP:3.16.48.63
姓名 吳錦龍(Jin-Long Wu)  查詢紙本館藏   畢業系所 化學學系
論文名稱 探討低毒性鈣鈦礦溶劑 2-Pyrrolidone 搭配旋轉浸泡法於空氣中製備鈣鈦礦膜並應用於反式鈣鈦礦太陽能電池
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年來非常熱門的鈣鈦礦太陽能電池(PSC)因其吸光層製程簡單、材料價格便宜且光電轉換效率經驗證最高可達25.2%(與矽晶圓太陽能電池效率幾乎相近),是極具商業化潛力的太陽能電池科技。但 PSC 的吸光層會因為製備環境的相對濕度、製備方法、鈣鈦礦起始溶液之溶劑不同,所得鈣鈦礦膜之品質也不同。本研究發展一種在大氣下製備鈣鈦礦膜的方法稱為”旋轉浸泡法(RSSE)”並搭配一高沸點 245℃ 且低毒性的 2-Pyrrolidone (2-PY)做為鈣鈦礦起始溶液之溶劑來製備鈣鈦礦膜。旋轉浸泡轉速為1800 rpm 浸泡5秒,所得鈣鈦礦膜再經100℃ 5分鐘的熱退火處理後的膜做為吸光層,所組裝之 PSC 元件的光電轉換效率可達13.97% (常用之”溶劑工程法(SE)”搭配 DMF : DMSO = 6 : 4 其元件光電轉換效率只有8.91%);RSSE (2-PY) 製備的鈣鈦礦膜之元件較SE (DMF : DMSO)製備的鈣鈦礦膜之元件無明顯遲滯效應,在85℃(國際測試太陽光模組的最高溫度)加熱10分鐘後,RSSE (2-PY) 之元件效率仍能維持起始效率的89% 而SE (DMF: DMSO) 之元件效率只有起始效率的79%;未封裝放置於大氣下(溫度: 25~30℃;RH: 25~45%) 20 天, RSSE (2-PY) 之元件效率仍能維持起始效率的 80%,而SE (DMF : DMSO)之元件已無效率。
摘要(英) Recently, perovskite solar cells (PSCs) have attracted great attention due to its simple-synthesis and low-cost characteristics. To date, the highest power conversion efficiency (PCE) of PSCs was up to 25.2% which is similar to the efficiency of silicon-based solar cells. Therefore, the fabrication technology for PSCs shows a great potential for commercial applications. However, the perovskite thin films is very sensitive with its preparing conditions, such as the relative humidity of the environment, the coating methods and the solvents for dissolving precursors. Therefore, the preparing conditions are very important for the quality of perovskite thin films.Here we make an effort to develop a method for preparing perovskite film under the atmosphere, which is called "Rotary Soaking Solvent Extraction (RSSE)". Furthermore, a new solvent (2-Pyrrolidone (2-PY)) which shows a high boiling point (up to 245℃) and low toxicity was used as a solvent for RSSE. The best condition in the RSSE and 2-PY system for PSCs is soaking speed of 1800 rpm for 5 seconds and thermal annealing at 100 °C for 5 minutes. Under this condition, the PCEs of the PSCs can reach as high as 13.97 %.The hysteresis effect in the cells prepared by RSSE is lower than those of the cells prepared by solvent engineering (SE) method. Moreover, to realize their thermal stability, the cells prepared by RSSE was treated by annealing at 85 ℃ for 10 minutes. They still showed 89% of initial efficiency. However, the cells prepared by SE only showed 79% of the initial efficiency. The unencapsulated cells prepared by the RSSE and 2-PY system retains 80% of the initial efficiency after 20 days in the atmosphere (Temperature: 25 ~ 30°C ; RH: 25 ~ 45%). However, the efficiency of the unencapsulated cells prepared by SE after 20 days approached zero.
關鍵字(中) ★ 低毒性鈣鈦礦溶劑
★ 旋轉浸泡法
★ 空氣中製備鈣鈦礦膜
★ 反式鈣鈦礦太陽能電池
關鍵字(英) ★ Low toxicity
★ Rotary Soaking Solvent Extraction
★ 2-Pyrrolidone
★ In the atmosphere
★ perovskite solar cells
論文目次 摘要.............................................................................................................I
Abstract......................................................................................................II
Graphical Abstract III
謝誌..........................................................................................................IV
目錄...........................................................................................................V
圖目錄.......................................................................................................X
表目錄.................................................................................................XVII
第一章、緒論 1
1-1、 前言........................................................................................1
1-2、 鈣鈦礦太陽能電池(PEROVSKITE SOLAR CELL, PSC) 4
1-2-1. 鈣鈦礦太陽能電池的架構 4
1-2-2. 反式鈣鈦礦太陽能電池的工作原理 5
1-2-3. 鈣鈦礦太陽能電池的光電轉換效率 6
1-3、 鈣鈦礦太陽能電池之研究歷程 9
1-3-1. 第一個將鈣鈦礦材料應用於太陽能電池的研究 9
1-3-2. 將固態電解質應用於鈣鈦礦太陽能電池 11
1-3-3. 第一個反式結構鈣鈦礦太陽能電池的研究 13
1-4、 鈣鈦礦吸光層的製備方法 14
1-4-1. 以一步驟合成法製備鈣鈦礦吸光層 14
1-4-2. 以兩步驟合成法製備鈣鈦礦吸光層 15
1-4-3. 溶劑工程法製備鈣鈦礦吸光層 17
1-4-4. 溶劑萃取法製備鈣鈦礦吸光層 19
1-5、 鈣鈦礦起始溶液之溶劑研究 20
1-5-1. 高沸點溶劑對鈣鈦礦膜的影響 20
1-5-2. 溶劑對鈣鈦礦材料的作用 22
1-6、 製備鈣鈦礦膜時環境的相對濕度及退火環境對鈣鈦礦膜結晶與表面形貌的影響 25
1-6-1. 不同相對溼度的製膜條件對鈣鈦礦膜表面形貌的影響..........................................................................................25
1-6-2. 鈣鈦礦膜在不同環境進行熱退火對鈣鈦礦膜品質之影響..........................................................................................27
1-7、 大氣環境中製備鈣鈦礦膜方法 30
1-7-1. 大氣中以狹縫式塗佈法製備鈣鈦礦膜 30
1-7-2. 大氣中以溶劑溶劑萃取法製備鈣鈦礦膜 34
1-8、 研究動機 37
第二章、實驗方法 38
2-1、 實驗藥品與儀器 38
2-1-1. 藥品 38
2-1-2. 儀器設備 39
2-2、 甲基銨碘(CH3NH3I)的合成 39
2-3、 PBI2(DMSO)2晶體的製備 40
2-4、 旋轉浸泡法步驟 41
2-5、 反式鈣鈦礦太陽能電池組裝步驟 42
2-5-1. 藥品配製 42
2-5-2. 元件組裝步驟 (如圖 2-5-1所示) 42
2-6、 儀器原理及樣品製備 46
2-6-1. 太陽光模擬器及光電轉換效率量測(Solar Simulator, Enlitech SS-F5) 46
2-6-2. 太陽能電池外部量子效率量測系統(Incident Photon to Current Conversion Efficiency (IPCE), QE-S3011) 47
2-6-3. X-ray 繞射光譜儀(X-Ray Diffractometer, BRUKER D8 Discover )..................................................................................48
2-6-4. 紫外光/可見光/近紅外光吸收光譜儀(Ultraviolet–visible-NIR spectroscopy,HITACHI U-4100 ) 49
2-6-5. 光致螢光光譜儀(Photoluminescence Spectrometer, Uni think UniRAM) 50
2-6-6. 三維量測儀 (3D Alpha-Step Profilometer,Veeco Dektak 150)..................................................................................50
2-6-7. 場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscope, Hitachi S-800) 51
第三章、結果與討論 52
3-1、 大氣環境中以溶劑工程法或旋轉浸泡法所製備的鈣鈦礦膜組裝成電池元件的光伏表現 52
3-1-1. 大氣環境中溶劑工程法及旋轉浸泡法所製備的鈣鈦礦膜之 照片及SEM圖 52
3-1-2. 大氣環境中以溶劑工程法及旋轉浸泡法所製備的鈣鈦礦膜組裝成元件的光伏表現 55
3-2、 以旋轉浸泡法篩選適合大氣環境中製備鈣鈦礦膜之溶劑 56
3-2-1. 以DMF、DMSO、NMP、2-PY 及DMF : DMSO = 6 : 4做為鈣鈦礦起始溶液之溶劑所製備鈣鈦礦膜的光伏表現 56
3-3、 以2-PYRROLIDONE為鈣鈦礦起始溶液之溶劑搭配旋轉浸泡法製備鈣鈦礦膜之條件優化 62
3-3-1. 旋轉塗佈轉速之優化 62
3-3-2. 旋轉塗佈時間之優化 64
3-3-3. 旋轉浸泡轉速之優化 66
3-3-4. 旋轉浸泡時間之優化 70
3-3-5. 鈣鈦礦膜加熱時間之優化 75
3-3-6. 鈣鈦礦膜加熱溫度之優化 79
3-4、 不同方法及溶劑所製備鈣鈦礦膜組裝之元件的穩定性量測......................................................................................................88
3-4-1. 不同方法及溶劑所製備鈣鈦礦膜組裝之元件的遲滯效應量測..........................................................................................88
3-4-2. 不同方法及溶劑所製備鈣鈦礦膜組裝之元件的熱穩定性量測..........................................................................................90
3-4-3. 不同方法及溶劑所製備鈣鈦礦膜組裝之元件的長時間穩定性量測 92
第四章、結論 97
參考文獻 106
參考文獻 [1] https://www.nrel.gov/pv/cell-efficiency.html(2019 年 8 月 23 日)
[2] https://www.digitimes.com.tw/tech/dt/n/shwnws.asp?cnlid=1&id=0000549462_HC15591658U13131URXX0((2019 年 8 月 23 日)
[3] http://en.wikipedia.org/wiki/Gustav_Rose (2019 年 8 月 23 日)
[4] Da-Xing Yuan, Adam Gorka, Mei-Feng Xu, Zhao-Kui Wang and Liang-Sheng Liao, “Inverted planar NH2CH=NH2PbI3 perovskite solar cells with 13.56% efficiency via low temperature processing“, Phys. Chem. Chem. Phys., 2015, 17, 19745-19750.
[5] Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T., “Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells”, J. Am. Chem. Soc. 2009, 131, 6050-6051.
[6] Nam Joong Jeon, Hyejin Na, Eui Hyuk Jung, Tae-Youl Yang, Yong Guk Lee, Geunjin Kim, Hee-Won Shin, Sang Il Seok , Jaemin Lee and Jangwon Seo, “A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells”, Nature energy, 2018, 3, 682-689.
[7] Wu-Qiang Wu, Zhibin Yang, Peter N. Rudd, Yuchuan Shao, Xuezeng Dai, Haotong Wei, Jingjing Zhao, Yanjun Fang, Qi Wang, Ye Liu, Yehao Deng, Xun Xiao, Yuanxiang Feng, Jinsong Huang, “Bilateral alkylamine for suppressing charge recombination and improving stability in blade-coated perovskite solar cells”, Sci. Adv, 2019, 5, 8925-8934.
[8] Dong Shi, Valerio Adinolfi, Riccardo Comin, Mingjian Yuan, Erkki Alarousu, Andrei Buin, Yin Chen, Sjoerd Hoogland, Alexander Rothenberger, Khabiboulakh Katsiev, Yaroslav Losovyj, Xin Zhang, Peter A. Dowben, Omar F. Mohammed, Edward H. Sargent, Osman M. Bakr, ” Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals”, Science, 2015, 347, 519–522.
[9] Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H., “Dye-Sensitized Solar Cells”, Chem. Rev., 2010, 110, 6595-6663.
[10] Hui-Seon Kim, Chang-Ryul Lee, Jeong-Hyeok Im, Ki-Beom Lee, Thomas Moehl, Arianna Marchioro, Soo-Jin Moon, Robin Humphry-Baker, Jun-Ho Yum, Jacques E. Moser, Michael Gra¨tzel & Nam-Gyu Park, “Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%”, Sci. Rep., 2012, 2, 591-597.
[11] Jun-Yuan Jeng, Yi-Fang Chiang, Mu-Huan Lee, Shin-Rung Peng, Tzung-Fang Guo, Peter Chen and Ten-Chin Wen, “CH3NH3PbI3 Perovskite/Fullerene Planar- Hetero- junction Hybrid Solar Cell”, Adv. Mater, 2013, 25, 3727–3732.
[12] Julian Burschka, Norman Pellet, Soo-Jin Moon, Robin Humphry-Baker, Peng Gao, Mohammad K. Nazeeruddin & Michael Gratzel1, “Sequential deposition as a route to high performance perovskite sensitized solar cell”, Nature, 2013, 499, 316–319.
[13] Nam Joong Jeon, Jun Hong Noh, Young Chan Kim,Woon Seok Yang, Seungchan Ryu and Sang Il Seok, “Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells”, Nature Materials, 2014, 13, 897-903.
[14] Yuanyuan Zhou, Mengjin Yang, Wenwen Wu, Alexander L. Vasiliev, Kai Zhu, and Nitin P. Padture, “Room-Temperature Crystallization of Hybrid-Perovskite Thin Films via Solvent-Solvent Extraction for High-Performance Solar Cells”, J. Mater. Chem. A, 2015, 3, 8178-8184.
[15] Chien-Hung Chiang, Jun-Wei Lin and Chun-Guey Wu, “One-step fabrication of a mixed-halide perovskite film for a high-efficiency inverted solar cell and module”, J. Mater. Chem. A, 2016, 4, 13525-13533.
[16] Chien-Hung Chiang, Zong-Liang Tseng and Chun-Guey Wu, “Planar Heterojunction Perovskite/ PC71BM Solar Cells with Efficiency Over 16% via (2/1)-step Spin-Coating Process”, J. Mater. Chem. A, 2014, 2, 15897 – 15903.
[17] Chien-Hung Chiang, Mohammad Khaja Nazeeruddin, Michael Gratzelc and Chun-Guey Wu, “The synergistic effect of H2O and DMF toward stable and 20% efficiency inverted perovskite solar cells”, Energy Environ. Sci., 2017, 10, 808-817.
[18] Chien-Hung Chiang and Chun-Guey Wu, “Film Grain-Size Related Long-Term Stability of Inverted Perovskite Solar Cells”, ChemSusChem, 2016, 9, 2666 –2672.
[19] Giles E. Eperon, Victor M. Burlakov, Pablo Docampo, Alain Goriely and Henry J. Snaith, “Morphological Control for High Performance, Solution-Processed Planar Heterojunction Perovskite Solar Cells”, Adv. Funct. Mater., 2014, 24, 151-157.
[20] Ye-Jin Jeon, Sehyun Lee, Rira Kang, Jueng-Eun Kim, Jun-Seok Yeo, Seung-Hoon Lee, Seok-Soon Kim, Jin-Mun Yun & Dong-Yu Kim, “Planar heterojunction perovskite solar cells with superior reproducibility”, Scientific Reports, 2014, 4, 6953.
[21] Namyoung Ahn, Dae-Yong Son, In-Hyuk Jang, Seong Min Kang, Mansoo Choi and Nam-Gyu Park, “Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide”, J. Am. Chem. Soc., 2015, 137, 8696-8699.
[22] Jin-Wook Lee, Zhenghong Dai, Changsoo Lee, Hyuck Mo Lee, Tae-Hee Han, Nicholas De Marco, Oliver Lin, Christopher S. Choi, Bruce Dunn, Jaekyung Koh, Dino Di Carlo, Jeong Hoon Ko, Heather D. Maynard and Yang Yang, “Tuning Molecular Interactions for Highly Reproducible and Efficient Formamidinium Perovskite Solar Cells via Adduct Approach” , J. Am. Chem. Soc., 2018, 140, 6317−6324.
[23] Hao Gao, Chunxiong Bao, Faming Li, Tao Yu, Jie Yang, Weidong Zhu, Xiaoxin Zhou, Gao Fu and Zhigang Zou, “Nucleation and Crystal Growth of Organic−Inorganic Lead Halide Perovskites under Different Relative Humidity”, ACS Appl. Mater. Interfaces, 2015, 7,9110-9117.
[24] Yen-Sook Jung, Kyeongil Hwang, Youn-Jung Heo, Jueng-Eun Kim, Donmin Lee, Cheol-Ho Lee, Han-Ik Joh, Jun-Seok Yeo and Dong-Yu Kim, “One-Step Printable Perovskite Films Fabricated under Ambient Conditions for Efficient and Reproducible Solar Cells”, ACS Appl. Mater. Interfaces, 2017, 9, 27832−27838.
[25] https://zh.wikipedia.org/wiki/%E5%8D%8A%E6%95%B8%E8%87%B4%E6%AD%BB%E9%87%8F (2019年10月1日)
[26] https://pubchem.ncbi.nlm.nih.gov/compound/6228#section=Toxicity (2019年10月1日)
[27] https://pubchem.ncbi.nlm.nih.gov/compound/679#section=NIOSH-Toxicity-Data (2019年10月1日)
[28] https://pubchem.ncbi.nlm.nih.gov/compound/13387#section=Toxicity (2019年10月1日)
[29] https://pubchem.ncbi.nlm.nih.gov/compound/12025#section=Toxicity (2019年10月1日)
[30] Yang Li, Jianan Wang, Yi Yuan, Xiandui Donga and Peng Wang, “Anti-solvent dependent device performance in CH3NH3PbI3 solar cells : the role of intermediate phase content in as-prepared thin films”, Sustainable Energy Fuels, 2017, 1, 1041–1048.
[31] Gerald Ngo Teke and Victor Kuete, “Acute and Subacute Toxicities of African Medicinal Plants”, 2014, doi.org/10.1016/B978-0-12-800018-2.00005-4
[32] Woon Seok Yang, Jun Hong Noh, Nam Joong Jeon, Young Chan Kim, Seungchan Ryu, Jangwon Seo, Sang Il Seok, “High-performance photovoltaic perovskite layers fabricated through intramolecular exchange”, Science, 2015, 348, 1234-1237.
[33] Yimhyun Jo, Kyoung Suk Oh, Minjin Kim, Ka-Hyun Kim, Heon Lee, Chan-Woo Lee and Dong Suk Kim, “High Performance of Planar Perovskite Solar Cells Produced from PbI2 (DMSO) and PbI2(NMP) Complexes by Intramolecular Exchange, Adv. Mater. Interfaces, 2016, 3, 1500768.
[34] Nam Joong Jeon, Jun Hong Noh, Woon Seok Yang, Young Chan Kim, Seungchan Ryu, Jangwon Seo & Sang Il Seok, “Compositional engineering of perovskite materials for high-performance solar cells”, Nature, 2015, 517, 476–480.
[35] Sateesh Prathapani, Divya Choudhary, Sudhanshu Mallick, Parag Bhargava and Aswani Yella, ”Experimental evaluation of room temperature crystallization and phase evolution of hybrid perovskite materials”, CrystEngComm, 2017, 19, 3834–3843.
[36] Bert Conings , Jeroen Drijkoningen, Nicolas Gauquelin, Aslihan Babayigit, Jan D’Haen, Lien D’Olieslaeger, Anitha Ethirajan, Jo Verbeeck, Jean Manca, Edoardo Mosconi, Filippo De Angelis and Hans-Gerd Boyen, “Intrinsic Thermal Instability of Methylammonium Lead Trihalide Perovskite”, Adv. Energy Mater., 2015, 5, 1500477.
[37] Severin N. Habisreutinger, Nakita K. Noel,Henry J. Snaith, “Hysteresis Index: A Figure without Merit for Quantifying Hysteresis in Perovskite Solar Cells”, ACS Energy Lett., 2018, 3, 2472−2476.
指導教授 江建宏 吳春桂(Chien-Hung Chiang Chun-Guey Wu) 審核日期 2019-11-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明