博碩士論文 106328602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:18.117.196.184
姓名 珊蒂(Dianisa Khoirum Sandi)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱
(The study of drying impacts on mixing in PDMS micromodel prepared using PMMA mold fabricated by CNC milling)
相關論文
★ 奈米矽晶片於葡萄糖電化學檢測分析研究與電極應用★ 微流體系統應用於機械力刺激人體膀胱癌細胞之研究
★ 多重微流體晶片機械應力刺激細胞培養之研究★ 藉由熱接合、表面改質與溶劑處理方法 封閉於環狀嵌段共聚物與環烯烴共聚物材料上 微流道之研究
★ Development of A Label-Free Imaging Droplet Sorting System with Machine Learning-Support Vector Machine (SVM)★ 複合式物理力的生物反應器自動化與控制設計
★ 外部致動之微流體機電控制平台★ 以微铣削進行高分子微流體裝置之製程整合
★ 奈米矽質譜晶片於質譜檢測之應用研究★ 以自發性化學蝕刻法製備矽奈米結構成長控制之研究
★ 矽奈米結構對於質譜離子化效率探討之研究★ 微滾軋製程應用於高分子材料轉印微結構之研究
★ 設計微流體晶片應用於人體胎盤幹細胞的物理/化學誘導分化之研究★ 利用熱壓製造類多孔隙介質之 微流道模型研究
★ 二次金沉積奈米矽晶片對質譜檢測分析研究與應用★ 單晶矽材料電化學放電鑽孔及同軸電度之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-9-1以後開放)
摘要(中) 本篇論文著重於學習利用PMMA模具製造出PDMS微模型,分析蒸發後的微模型進行對混合物的影響。因此使用複製模塑法將PMMA模具成功地製作出PDMS微模型,模具是在PMMA板材上使用CNC銑削及重複使用製作出PDMS微模型,模具包含模型1以及模型2,分別為顆粒間距差異,各別尺寸為120µm及90µm。
皆進行了蒸發及混合的實驗,微模型在低濃度的染色乙醇(舊液體)中充分地佈滿內部,而微模型中須在穩定的排水情況下,使用舊液體將內部空氣排空。改變液體的注入率直到為0.2 µl/min而停止,當舊液體到達飽和程度(即為So)並使其在內部蒸發後,在微模型混合通過注射高濃度的染色甲醇(新液體)得到相同的注入率(Q)。此論文使用兩種實驗,第二種實驗是沒有經過排水過程。
液體注入率(Q)根據毛細數(Ca)為3x10-6,3x10-5和3x10-4,對應到流速(Q)3組數值為模型1與模型2分別為1.25µl/min與1.55µl/min;12.5µl/min與15.5µL/min;125µl/min與155µL/min;而預期得到So分別是So=10%,So=20%以及So=30%。
液體蒸發So=10%由於有更多的水相蒸發,相較於So=20%以及So=30%有最長的蒸發時間與最高的濃度。模型2的蒸發率比模型1來得快,因為小液體群在緩和的狀態下,透過縫隙傳遞且加速蒸發。
在模型1中,因混合分散作用形成了新液體的手指現象;在模型2中,液體蒸發So=30%,混合主要由擴散造成的,而So=10%及So=20%則在平流引起的。增加毛細數Ca在新的液體注入期間限制擴散並且推進加速混合的過程。當平流在So=10%和So=20%時,由於有重大濃度差,控制更高的So導致更大的空間擴散。另外,在模型1中,當新液體注入毛細數Ca為3x10-5和3x10-4後,空氣氣泡完全被取代。在Ca為3x10-6時,因為有殘餘的氣泡在微模型的中間,導致新液體通過模型的邊緣;在模型2中,空氣氣泡被發現在一些區域並扮演了防止新液體經過與混合的角色,然而,當毛細數Ca數值的減小相對也減少氣泡的產生。
總而言之,在混合的過程中,由於模型2中的液體通過無序通道導致混合機會增加,而高於模型1的混合能力;Ca的增加也提高混合能力,因為它改善了平流過程;較高的So也具有更多的混合能力,這是由於更顯著的濃度梯度影響在擴散期間有更高的質量傳遞。
模型2(無排水)比模型2(有排水)需要更長的蒸發時間。蒸發後,模型2(有排水)因為有排水過程導致有許多未連接的液體團在內部傳播。而模型2(無排水)因為沒有排水過程,所以僅有少許未連接的液體團,且能均勻的散佈內部。因此,排水過程影響了混合能力,模型2(無排水)中的空氣面積比模型2(有排水)來得少,這表示模型2(無排水)有較大的傳遞面積,提高混合能力。
摘要(英) The focuses are to study PMMA mold fabrication for preparing PDMS micromodel, drying in micromodel, and drying impacts on mixing behaviors in micromodel. PDMS micromodels were successfully prepared by replica molding using PMMA molds built by CNC milling. The molds included Model 1 and Model 2 with the average throat sizes are ~120 µm and ~90 µm, respectively.
The micromodel was fully imbibed by a low concentration of dyed ethanol (the old liquid). Drainage was done by invading gas air and stopped at steady condition. Drying was conducted by changing the injection rate of gas air to be 0.2 µl/min and stopped when the dried old liquid reached certain saturations (So). Then, mixing was conducted by injecting a high concentration of dyed ethanol (the new liquid) into the micromodel with the same injection rate (Q) as in the imbibition and the drainage. There were two kinds of experiments, the second was conducted without drainage.
The liquid injection rates (Q) were varied based on capillary numbers (Ca) of 3x10-6, 3x10-5, 3x10-4 which were responsible Q of 1.25µl/min and 1.55µl/min (Model 1 and Model 2); 12.5µl/min and 15.5µL/min; 125µl/min and 155µL/min; respectively. The desired So were varied around So=10%, So=20%, and So=30%.
The dried liquid of So=10% has the longest drying times and the highest concentration than So=20% and So=30% due to the more aqueous phase is evaporated. Model 2 has faster drying rates than Model 1 because much small liquid cluster spreads in the pore that eases and accelerates evaporation.
In Model 1, finger of the new liquid is formed and mixing happened by dispersion. In Model 2, at So=30%, mixing is dominated by diffusion while advection dominates in So=10% and So=20%. The increase of Ca during the new liquid injection limits the diffusion and advances the advection. The higher So induces longer diffusion.
In Model 1, the air bubble is completely displaced during the new liquid injection with Ca=3x10-5 and Ca=3x10-4. At Ca=3x10-6, it remains in the middle of micromodel. In Model 2, the air bubbles trapped in some areas prevent mixing by blocking the new liquid to pass. The decrease of Ca reduces the air bubble trapping in Model 2.
The mixing areas in Model 2 are higher than those are in Model 1 due to disorder liquid channel in Model 2 that upsurge the chance of mixing; the increase of Ca rises the mixing areas because it improves the advection process; the higher So has the more mixing areas due to the more significant concentration gradient.
Model 2 (no drainage) needed much longer drying times than Model 2 (with drainage). After drying, In Model 2 (with drainage) has many disconnect liquid clusters spreading in micromodel. In Model 2 (no drainage), it has fewer disconnect liquid clusters and several big bulks of liquid. It influences mixing behaviors in Model 2. The air area in Model 2 (no drainage) is lower than it is in Model 2 (with drainage), thus in Model 2 (no drainage) has higher mixing area.
關鍵字(中) ★ PMMA模具
★ PDMS微模型
★ 蒸發
★ 混合
關鍵字(英) ★ PMMA mold
★ PDMS micromodel
★ drying
★ mixing
論文目次 摘要 i
Abstract iii
Table of Contents v
List of Figures vii
List of Tables xi
Nomenclature xii

Chapter 1. Introduction 1
Background 1
Purposes of the study 4
Scopes of the study 5
Chapter 2. Experimental Method 5
Material and tools 5
Micromodel Fabrication 6
Mold Fabrication by CNC milling 6
PDMS Micromodel fabrication 8
Contact angel (θ) measurement 9
Experiment 10
Experimental setup 10
Instrumental setup 11
Drainage-drying-mixing experiment 12
Drying-mixing experiment 12
Analysis 13
Estimating the saturation of the dried old liquid (So) 13
Estimating the area fraction of the dried old liquid (low concentration), the new liquid (high concentration), the mixing liquid, and the air 16
Estimating the concentration of the liquid 18
Chapter 3. Results and discussions 19
Fabrication of PMMA mold and PDMS micromodel 19
Investigation of drying in micromodel 20
Investigation drainage in micromodel 21
Effects of pore sizes on drying geometry and drying times 22
Effects of dried old liquid saturation (So) on drying times and concentration 24
Investigation of mixing in micromodel 28
Effects of pore size on mixing behavior 28
Effects of air bubble trapping on mixing behavior 30
Effects of dried old liquid saturation (So) on mixing behavior 30
Effects of capillary number (Ca) on mixing caused by diffusion and advection, and air bubble trapping 32
Effects of pore size, capillary number (Ca), and dried old liquid saturation (So) on mixing area 34
Effect of drainage on Model 2 37
Effect of drainage on drying 37
Effect of drying in Model 2 (with drainage) and Model 2 (no drainage) on mixing 41
Chapter 4. Conclusions 46
References 48
參考文獻 [1] D.D. Ganji, S.H.H. Kachapi, Nanofluid Flow in Porous Medium, (2015) 271-316.
[2] J. Bear, Dynamics of fluids in porous media, Elsevier, New York, 1972.
[3] F.A.L. Dullien, Porous media: fluid transport and pores structure, Academic Press,Inc, California, 1992.
[4] P. Anna, J. Jimenez-Martinez, H. Tabuteau, R. Turuban, T. Le Borgne, M. Derrien, Y. Meheust, Mixing and reaction kinetics in porous media: an experimental pore scale quantification, Environ Sci Technol 48(1) (2014) 508-516.
[5] J. Jiménez-Martínez, M.L. Porter, J.D. Hyman, J.W. Carey, H.S. Viswanathan, Mixing in a three-phase system: Enhanced production of oil-wet reservoirs by CO2 injection, Geophysical Research Letters 43(1) (2016) 196-205.
[6] N.K. Karadimitriou, V. Joekar-Niasar, O.G. Brizuela, Hydro-dynamic Solute Transport under Two-Phase Flow Conditions, Sci Rep 7(1) (2017) 6624(1-7).
[7] T. Xu, Y. Ye, Y. Zhang, Y. Xie, Recent Advances in Experimental Studies of Steady-State Dilution and Reactive Mixing in Saturated Porous Media, Water 11(1) (2018) 1-17.
[8] J.M.F. Brian C. Cruz , Yi-Syuan Guo, Daniel Dougherty, Hector F. Hinestroza, Jhoan S. Hernandez, Daniel J. Gage, Yong Ku Cho, and Leslie M. Shor, Pore-scale water dynamics during drying and the impacts of structure and surface wettability, Water Resources Research 53 (2017) 5585–5600.
[9] P. Fantinel, O. Borgman, R. Holtzman, L. Goehring, Drying in a microfluidic chip: experiments and simulations, Sci Rep 7(1) (2017) 1-12.
[10] Y.L. Yeu, H.H.J. Tan, A. Gorin, A. Vakhguelt, Experimental Study of the Rate of Evaporation from Porous Media of Different Matrices, Defect and Diffusion Forum 379 (2017) 171-180.
[11] C. Chen, P. Duru, P. Joseph, S. Geoffroy, M. Prat, Control of evaporation by geometry in capillary structures. From confined pillar arrays in a gap radial gradient to phyllotaxy-inspired geometry, Sci Rep 7(1) (2017) 1-8.
[12] A. Rufai, J. Crawshaw, Micromodel observations of evaporative drying and salt deposition in porous media, Physics of Fluids 29(12) (2017) 126603(1-11).
[13] S.B. Patil, H.S. Chore, Contaminant transport through porous media: An overview of experimental and numerical studies, Advances in environmental research 3(1) (2014) 45-69.
[14] O.P.a.B. Datta, Characterization of Groundwater Pollution Sources with Unknown Release Time History, Journal of Water Resource and Protection 6 (2014) 337-350.
[15] D.D. Genske, Urban Land: Degradation - Investigation - Remediation, 1 ed., Springer-Verlag Berlin Heidelberg, New York, 2003.
[16] J. Jiménez-Martínez, P.d. Anna, H. Tabuteau, R. Turuban, T.L. Borgne, Y. Méheust, Pore-scale mechanisms for the enhancement of mixing in unsaturated porous media and implications for chemical reactions, Geophysical Research Letters 42(13) (2015) 5316-5324.
[17] T.L.B. Joaquın Jimenez-Martınez, Herve Tabuteau, and Yves Meheust, Impact of saturation on dispersion andmixing in porous media: Photobleaching pulse injection experiments and shear-enhancedmixingmodel, Water Resources Research 53 (2017) 1457–1472.
[18] J.M. Bray, E.G. Lauchnor, G.D. Redden, R. Gerlach, Y. Fujita, S.L. Codd, J.D. Seymour, Impact of Mineral Precipitation on Flow and Mixing in Porous Media Determined by Microcomputed Tomography and MRI, Environ Sci Technol 51(3) (2017) 1562-1569.
[19] C. Chen, P. Duru, P. Joseph, S. Geoffroy, M. Prat, Control of evaporation by geometry in capillary structures. From confined pillar arrays in a gap radial gradient to phyllotaxy-inspired geometry, Sci Rep 7(1) (2017) 15110.
[20] J. Thiery, S. Rodts, D.A. Weitz, P. Coussot, Drying regimes in homogeneous porous media from macro- to nanoscale, Physical Review Fluids 2(7) (2017) 1-15.
[21] N.K. Karadimitriou, S.M. Hassanizadeh, A Review of Micromodels and Their Use in Two-Phase Flow Studies, Vadose Zone Journal 11(3) (2012) 1-25.
[22] A. Anbari, H.T. Chien, S.S. Datta, W. Deng, D.A. Weitz, J. Fan, Microfluidic Model Porous Media: Fabrication and Applications, Small 14(18) (2018) 1-15.
[23] N.K. Karadimitriou, M. Musterd, P.J. Kleingeld, M.T. Kreutzer, S.M. Hassanizadeh, V. Joekar-Niasar, On the fabrication of PDMS micromodels by rapid prototyping, and their use in two-phase flow studies, Water Resources Research 49(4) (2013) 2056-2067.
[24] S.K.Y.T.a.G.M. Whitesides, Optofluidics: Fundamentals, Devices, and Applications in: H.U. Department of Chemistry and Chemical Biology (Ed.) Basic Microfluidic and Soft Lithographic Techniques 2009.
[25] D.L. Carugo, J.Y.; Pora, A.; Browning, R.J.; Capretto, L.; Nastruzzi, C.; Stride, E. Facile, cost-effective production of microscale PDMS architectures using a combined micromilling-replica moulding (µMiREM) technique, Biomed. Microdevices 18(4) (2016).
[26] T.E.d.G. David J. Guckenberger, Alwin M. D. Wan, David J. Beebe and Edmond W. K. Young, Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices, Lab Chip, 15(2364) (2015).
[27] D.C. Zhizhi Zhou, Xiang Wang and Jiahuan Jiang MIlling Positive Msster for Polydimethylsiloxane Microfluidic Devices: The Microfabrication and Rhoughness Issue, Micromachines 8(287) (2017).
[28] D.J. Guckenberger, T.E. de Groot, A.M. Wan, D.J. Beebe, E.W. Young, Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices, Lab Chip 15(11) (2015) 2364-78.
[29] S. Bhattacharya, A. Datta, J.M. Berg, S. Gangopadhyay, Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength, Journal of Microelectromechanical Systems 14(3) (2005) 590-597.
[30] S.E. Norred, P.M. Caveney, S.T. Retterer, J.B. Boreyko, J.D. Fowlkes, C.P. Collier, M.L. Simpson, Sealable femtoliter chamber arrays for cell-free biology, J Vis Exp 97(97) (2015) 1-10.
[31] J.F.A. H. Hillborg, U.W. Gedde, G.D. Smith, H.K. Yasuda, K. Wikstrom, Crosslinked polydimethylsiloxane exposed to oxygen plasma studied by neutron reflectometry and other surface specific techniques, Polymer 41 (2000) 6851–6863.
[32] J.C.M. David C. Duffy, Olivier J. A. Schueller, and George M. Whitesides, Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane), Anal. Chem. 70 (1998) 4974-4984.
[33] M. Adiraj Iyer, D.T. Eddington, Storing and releasing rhodamine as a model hydrophobic compound in polydimethylsiloxane microfluidic devices, Lab Chip 19(4) (2019) 574-579.
[34] M.B. Toepke, D, PDMS absorption of small molecules and consequences in microfluidic applications, Lab on a chip 6 (2007).
指導教授 曹嘉文(Chia Wen, Tsao) 審核日期 2019-9-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明