博碩士論文 106521112 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:61 、訪客IP:3.148.106.105
姓名 黃嘉暐(Chia-Wei Huang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 使用40奈米互補式金氧半製程之85-GHz功率放大器設計
(A 85-GHz Power Amplifier Design in 40-nm CMOS Process)
相關論文
★ 以90-nm CMOS 製程實現之47-GHz 壓控振盪器設計★ 應用於衛星通訊之QFN封裝X-/Ku-Band 低雜訊放大器設計
★ 應用於太赫茲成像系統340-GHz反射器天線系統和85-GHz二倍頻器★ 應用於太赫茲通訊之 40 奈米互補式金氧半二倍頻器設計
★ 應用於太赫茲影像雷達及無線通訊系統之40-nm CMOS壓控振盪器
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本篇論文提出一個85-GHz功率放大器,應用於340-GHz影像雷達之發射機,使用40-nm CMOS製程,電路架構為兩級之共源極差動放大器。為了提升增益及穩定度,加入中和電容來補償電晶體閘極與汲極間之回授路徑。使用了變壓器作為共振耦合網路的技術,具有阻抗匹配網路及巴倫器的效果。此85-GHz功率放大器經由on-wafer量測,其飽和功率為10.85 dBm,輸出1dB功率壓縮點為10.76 dBm,最佳功率附加效益為8.5%。
由於對資料快速取得、多媒體品質及手機多媒體通訊之需求,無線通訊系統的傳輸速率越來越快。本篇論文提出一個100-GHz功率放大器,應用於200-GHz高速振幅偏移調變無線發射機,使用40-nm CMOS製程來實現。設計流程如前,使用中和電容來提升穩定度及增益,並使用變壓器作為阻抗匹配網路。此100-GHz功率放大器在0.9 V的偏壓模擬下,具有10.9 dBm的飽和功率,輸出1dB功率壓縮點為7.4 dBm,最佳功率附加效益為11%,頻寬為25.3%。此200-GHz高速振幅偏移調變無線發射機之電路,包含壓控震盪器、解碼器、緩衝器、電壓放大器、功率放大器、二倍頻器、振幅偏移調變器及介電共振器天線。訊號經由天線輻射前,在工作頻率為200-GHz時,輸出功率為0.3 dBm。調變訊號經由PCB之鎊線連接結構進入調變器後,此發射機調變速度可達20-Gbps。
摘要(英) This thesis proposes a 85-GHz power amplifier, which is applied to 340-GHz transmitter of imaging radar, is using TSMC 40-nm CMOS technology for realizing. Two-stage differential power amplifier is implemented with common source mode. The neutralizing capacitor mitigates the intrinsic gate-drain feedback of each transistor for increasing power gain and stability. Transformers act as resonator coupling networks, which work as impedance matching networks and baluns. The on-wafer measurement results of 85-GHz power amplifier provide Psat of 10.85 dBm, OP1dB of 10.76 dBm, and maximum PAE of 8.5%.
Owing to high-speed requirement of data, quality of multimedia, and multimedia communication of mobile phone, the data rate of wireless communication system is getting faster and faster. This thesis proposes a 100-GHz power amplifier of 200-GHz high-speed ASK wireless transmitter using TSMC 40-nm CMOS technology. The design flow is the same as previous, using neutralizing capacitors for increasing the stability and gain, and using transformers for impedance matching networks. The simulation results of 100-GHz power amplifier, with 0.9 V supply voltage, provide Psat of 10.9 dBm, OP1dB of 7.4 dBm, maximum PAE of 11%, and the 3-dB bandwidth of 25.3%. The circuits of 200-GHz ASK wireless transmitter consist of a voltage control oscillator, a decoder, a buffer, a voltage amplifier, a power amplifier, a doubler, an ASK moduler, and a dielectric resonator antenna. The radiated output power reaches to 0.3 dBm at 200-GHz. After sending the modulated signal to ASK moduler via bondwire interconnect of PCB, the data rate of this transmitter can reach to 20-Gbps.
關鍵字(中) ★ 功率放大器
★ 40奈米互補式金氧半製程
★ 太赫茲波
★ 毫米波
★ 發射機
關鍵字(英) ★ PA
★ 40-nm CMOS
★ THz Wave
★ mmWave
★ Transmitter
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vii
表目錄 xi
第一章 緒論 1
1.1  研究動機 1
1.1.1  太赫茲波影像系統 2
1.1.2  高速無線傳輸系統 2
1.2  論文架構 3
第二章 85-GHz功率放大器 4
2.1  前言 4
2.2  功率放大器設計 6
2.2.1  功率放大器 6
  2.2.1.1  電流源功率放大器 6
  2.2.1.2  A類放大器 9
2.2.2  克理普斯負載線法 10
  2.2.2.1  等功率曲線圖 10
  2.2.2.2  最佳負載線 14
2.3  功率放大器電晶體設計 15
2.3.1  功率級 15
2.3.2  驅動級 16
2.4  85-GHz功率放大器設計 17
2.4.1  差動對共源極放大器 17
2.4.2  中和電容技術 17
  2.4.2.1  操作原理 18
  2.4.2.2  中和電容設計 19
  2.4.2.3  模擬結果 22
2.4.3  負載牽引模擬 23
  2.4.3.1  驅動級 23
  2.4.3.2  功率級 24
2.4.4  匹配網路設計 25
  2.4.4.1  變壓器設計原理 25
  2.4.4.2  輸出匹配網路 30
  2.4.4.3  級間匹配網路 32
  2.4.4.4  輸入匹配網路 34
2.5  85-GHz功率放大器模擬結果 37
2.5.1  S參數模擬結果 37
2.5.2  大訊號特性模擬結果 38
2.6  85-GHz功率放大器之佈局實現 39
2.7  85-GHz功率放大器量測結果 42
2.7.1  S參數量測結果 42
2.7.2  大訊號特性量測結果 43
2.8  結果與討論 45
第三章 200-GHz無線發射機電路 47
3.1  系統架構與介紹 47
3.2  100-GHz功率放大器設計 49
3.2.1  電晶體設計 49
3.2.2  中和電容 49
  3.2.2.1  模擬結果 51
3.2.3  負載牽引模擬 52
  3.2.3.1  驅動級 52
  3.2.3.2  功率級 53
3.2.4  匹配網路設計 54
  3.2.4.1  輸出匹配網路 54
  3.2.4.2  級間匹配網路 57
  3.2.4.3  輸入匹配網路 60
  3.2.4.4  100-GHz功率放大器整體表現 63
3.2.5  100-GHz功率放大器佈局考量與模擬結果 64
  3.2.5.1  S參數模擬結果 65
  3.2.5.2  大訊號特性模擬結果 66
3.2.6  100-GHz功率放大器結果與討論 67
3.3  200-GHz無線發射機佈局考量及模擬結果 68
3.3.1  200-GHz無線發射機模擬結果 69
3.4  200-GHz無線發射機量測架設 70
3.4.1  發射機頻率及輸出功率量測 72
3.4.2  ASK調變訊號量測 74
第四章 總結與未來展望 75
4.1  總結 75
4.2  未來展望 75
參考文獻 76
參考文獻 [1] K. Ajito, and Y. Ueno, “THz chemical imaging for biological applications,” IEEE Trans. THz Sci. Technol., vol. 1, no. 1, pp. 293-300, Sep. 2011.
[2] N. Bajwa et al., “Terahertz imaging of cutaneous edema: correlation with magnetic resonance imaging in burn wounds,” IEEE Transactions on Biomedical Engineering, vol. 64, no. 11, pp. 2682-2694, Nov. 2017.
[3] M. Lucente et al., “Experimental Missions in W-Band: A Small LEO Satellite Approach,” IEEE Systems Journal, vol. 2, no. 1, pp. 90-103, Mar. 2008.
[4] N. Kukutsu and Y. Kado, “Overview of millimeter and terahertz wave application research,” NTT Technical Review, vol. 7, no. 3, pp. 1-6, Mar. 2009.
[5] TeraSense, Security applications [Online]. Available: http://terasense.com/applications/security/
[6] S. Cherry, “Edholm’s Law of Bandwidth,” IEEE Spectrum, vol. 41, no. 7, pp. 58-60, 2004.
[7] 邱煥凱,林貴城,ADS應用於射頻功率放大器設計與模擬,初版,清大出版社,新竹市,民國一百零三年。
[8] Steve C. Cripps (2006). RF power amplifiers for wireless communications(2nd ed.). London: Artech house.
[9] W. L. Chan and J. R. Long, “A 58–65 GHz neutralized CMOS power amplifier with PAE above 10% at 1-V supply,” IEEE J. Solid-State Circuits, vol. 45, no. 3, pp. 554-564, Mar. 2010.
[10] H. Kim, J. Bae, S. Oh, W. Lim and Y. Yang, “Design of two-stage fully-integrated CMOS power amplifier for K-band applications,” International Conference on Advanced Communication Technology (ICACT), Bongpyeong, 2017, pp. 493-496.
[11] Z. Deng et al., “A layout-based optimal neutralization technique for mm-wave differential amplifiiers,” IEEE RFIC Symp. Dig., pp. 355-358, Jun. 2010.
[12] Z. Wang et al., “A CMOS 210-GHz fundamental transceiver with OOK modulation,
” IEEE J. Solid-State Circuits, vol. 49, no. 3, pp. 564-580, Mar. 2014.
[13] Z. Wang and P. Heydari, “A study of operating condition and design methods to achieve the upper limit of power gain in amplifiers at Near-fmax frequencies,” IEEE Transactions on Circuits and System, vo1.64, no. 2, pp. 261-271, Feb. 2017.
[14] C.-H Li, C.-N Kuo, and M.-C Kuo, “A 1.2-V 5.2-mW 20-30GHz wideband receiver frond-end in 0.18-μm CMOS,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 11, pp. 3502-3512, Nov. 2012.
[15] C.-H Li, Y.-L Liu, and C.-N Kuo, “A 0.6-V 0.33-mW 5.5-GHz receiver front-end using resonator coupling technique,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 6, pp. 1629-1638, Jun. 2011.
[16] Sarkas et al., “Silicon-Based radar and imaging sensors operating above 120 GHz,” IEEE MIKON , May. 2012.
[17] D. Zhao and P. Reynaert, “An E-band power amplifier with broadband parallel-series power combiner in 40-nm CMOS,” IEEE Trans. Microw. Theory Tech., vol. 63, no. 2, pp. 683-690, Feb. 2015.
[18] H. S. Son et al., “A 109 GHz CMOS power amplifier with 15.2 dBm Psat and 20.3 dB gain in 65-nm CMOS technology,” IEEE Microw. Compon. Lett., vol. 26, no. 7, pp. 510-512, Jul. 2016.
[19] A. Agah, J. Jayamon, P. Asbeck, J. Buckwalter, and L. Larson, “A 11% PAE, 15.8-dBm two-stage 90-GHz stack-FET power amplifier in 45-nm SOI CMOS,” IEEE MTT-S Int. Microw. Symp. Dig., pp. 1-3, Jun. 2013.
[20] Z. Wang et al., “A CMOS 210-GHz fundamental transceiver with OOK modulation.” IEEE J. Solid-State Circuits, vol. 49, no. 3, pp. 564-580, Mar. 2014.
[21] N. Sarmah et al., “A fully integrated 240-GHz direct-conversion quadrature transmitter and receiver chipset in SiGe technology,” IEEE Trans. Microw. Theory Tech., vol. 64, no. 2, pp. 562-574, Feb. 2016.
[22] K. Katayama et al., “A 300 GHz CMOS transmitter with 32-QAM 17.5 Gb/s/ch capacity over six channels,” IEEE J. Solid-State Circuits, vol. 51, no. 12, pp. 3037-3048, Dec. 2016.
[23] C.-H Li and T.-Y Chiu, “340-GHz low-cost and high-gain on-chip higher order mode dielectric resonator antenna for THz applications,” IEEE Trans. THz Sci. Technol., vol. 7, no. 3, pp. 284-294, Sep. 2015.
[24] S. Kang, S. Thyagarajan, and A. Niknejad, “A 240 GHz fully integrated wideband QPSK transmitter in 65 nm CMOS,” IEEE J. Solid-State Circuits, vol. 50, no. 10, pp. 2268-2280, Oct. 2015.
[25] S. Kang, S. Thyagarajan, and A. Niknejad, “A 0.38 THz fully integrated transceiver utilizing a quadrature push-push harmonic circuitry in SiGe BiCMOS,” IEEE J. Solid-State Circuits, vol. 14, no. 10, pp. 2344-2354, Oct. 2012.
[26] S. Moghadami, F. Hajilou, P. Agrawal, and S. Ardalan, “A 210 GHz fully-integrated OOK transceiver for short-range wireless chip-tochip communication in 40 nm CMOS technology,” IEEE Trans. THz Sci. Technol., vol. 5, no. 5, pp. 737-741, Sep. 2015.
指導教授 傅家相 李俊興(Jia-Shiang Fu Chun-Hsing Li) 審核日期 2019-10-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明