參考文獻 |
[1] K. Ajito, and Y. Ueno, “THz chemical imaging for biological applications,” IEEE Trans. THz Sci. Technol., vol. 1, no. 1, pp. 293-300, Sep. 2011.
[2] N. Bajwa et al., “Terahertz imaging of cutaneous edema: correlation with magnetic resonance imaging in burn wounds,” IEEE Transactions on Biomedical Engineering, vol. 64, no. 11, pp. 2682-2694, Nov. 2017.
[3] M. Lucente et al., “Experimental Missions in W-Band: A Small LEO Satellite Approach,” IEEE Systems Journal, vol. 2, no. 1, pp. 90-103, Mar. 2008.
[4] N. Kukutsu and Y. Kado, “Overview of millimeter and terahertz wave application research,” NTT Technical Review, vol. 7, no. 3, pp. 1-6, Mar. 2009.
[5] TeraSense, Security applications [Online]. Available: http://terasense.com/applications/security/
[6] S. Cherry, “Edholm’s Law of Bandwidth,” IEEE Spectrum, vol. 41, no. 7, pp. 58-60, 2004.
[7] 邱煥凱,林貴城,ADS應用於射頻功率放大器設計與模擬,初版,清大出版社,新竹市,民國一百零三年。
[8] Steve C. Cripps (2006). RF power amplifiers for wireless communications(2nd ed.). London: Artech house.
[9] W. L. Chan and J. R. Long, “A 58–65 GHz neutralized CMOS power amplifier with PAE above 10% at 1-V supply,” IEEE J. Solid-State Circuits, vol. 45, no. 3, pp. 554-564, Mar. 2010.
[10] H. Kim, J. Bae, S. Oh, W. Lim and Y. Yang, “Design of two-stage fully-integrated CMOS power amplifier for K-band applications,” International Conference on Advanced Communication Technology (ICACT), Bongpyeong, 2017, pp. 493-496.
[11] Z. Deng et al., “A layout-based optimal neutralization technique for mm-wave differential amplifiiers,” IEEE RFIC Symp. Dig., pp. 355-358, Jun. 2010.
[12] Z. Wang et al., “A CMOS 210-GHz fundamental transceiver with OOK modulation,
” IEEE J. Solid-State Circuits, vol. 49, no. 3, pp. 564-580, Mar. 2014.
[13] Z. Wang and P. Heydari, “A study of operating condition and design methods to achieve the upper limit of power gain in amplifiers at Near-fmax frequencies,” IEEE Transactions on Circuits and System, vo1.64, no. 2, pp. 261-271, Feb. 2017.
[14] C.-H Li, C.-N Kuo, and M.-C Kuo, “A 1.2-V 5.2-mW 20-30GHz wideband receiver frond-end in 0.18-μm CMOS,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 11, pp. 3502-3512, Nov. 2012.
[15] C.-H Li, Y.-L Liu, and C.-N Kuo, “A 0.6-V 0.33-mW 5.5-GHz receiver front-end using resonator coupling technique,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 6, pp. 1629-1638, Jun. 2011.
[16] Sarkas et al., “Silicon-Based radar and imaging sensors operating above 120 GHz,” IEEE MIKON , May. 2012.
[17] D. Zhao and P. Reynaert, “An E-band power amplifier with broadband parallel-series power combiner in 40-nm CMOS,” IEEE Trans. Microw. Theory Tech., vol. 63, no. 2, pp. 683-690, Feb. 2015.
[18] H. S. Son et al., “A 109 GHz CMOS power amplifier with 15.2 dBm Psat and 20.3 dB gain in 65-nm CMOS technology,” IEEE Microw. Compon. Lett., vol. 26, no. 7, pp. 510-512, Jul. 2016.
[19] A. Agah, J. Jayamon, P. Asbeck, J. Buckwalter, and L. Larson, “A 11% PAE, 15.8-dBm two-stage 90-GHz stack-FET power amplifier in 45-nm SOI CMOS,” IEEE MTT-S Int. Microw. Symp. Dig., pp. 1-3, Jun. 2013.
[20] Z. Wang et al., “A CMOS 210-GHz fundamental transceiver with OOK modulation.” IEEE J. Solid-State Circuits, vol. 49, no. 3, pp. 564-580, Mar. 2014.
[21] N. Sarmah et al., “A fully integrated 240-GHz direct-conversion quadrature transmitter and receiver chipset in SiGe technology,” IEEE Trans. Microw. Theory Tech., vol. 64, no. 2, pp. 562-574, Feb. 2016.
[22] K. Katayama et al., “A 300 GHz CMOS transmitter with 32-QAM 17.5 Gb/s/ch capacity over six channels,” IEEE J. Solid-State Circuits, vol. 51, no. 12, pp. 3037-3048, Dec. 2016.
[23] C.-H Li and T.-Y Chiu, “340-GHz low-cost and high-gain on-chip higher order mode dielectric resonator antenna for THz applications,” IEEE Trans. THz Sci. Technol., vol. 7, no. 3, pp. 284-294, Sep. 2015.
[24] S. Kang, S. Thyagarajan, and A. Niknejad, “A 240 GHz fully integrated wideband QPSK transmitter in 65 nm CMOS,” IEEE J. Solid-State Circuits, vol. 50, no. 10, pp. 2268-2280, Oct. 2015.
[25] S. Kang, S. Thyagarajan, and A. Niknejad, “A 0.38 THz fully integrated transceiver utilizing a quadrature push-push harmonic circuitry in SiGe BiCMOS,” IEEE J. Solid-State Circuits, vol. 14, no. 10, pp. 2344-2354, Oct. 2012.
[26] S. Moghadami, F. Hajilou, P. Agrawal, and S. Ardalan, “A 210 GHz fully-integrated OOK transceiver for short-range wireless chip-tochip communication in 40 nm CMOS technology,” IEEE Trans. THz Sci. Technol., vol. 5, no. 5, pp. 737-741, Sep. 2015. |