參考文獻 |
[1]行 政 院 衛 生 署 : 衛 生 福 利 統 計 專 區 , 死 因 統 計 ,https://dep.mohw.gov.tw/DOS/cp-4472-48034-113.html,上網日期:2019-06-21
[2] Can Ye, Miguel Tavares Coimbra, B.V.K. Vijaya Kumar, ” Arrhythmia Detection and Classification using Morphological and Dynamic Features of ECG Signals”, Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE, pp. 1918-1921, 2010.
[3] Hari Mohan Rai, Anurag Trivedi, Shailja Shukla, Vivechana Dubey, ” ECG Arrhythmia Classification using Daubechies Wavelet and Radial Basis Function Neural Network”, Engineering (NUiCONE), 2012 Nirma University International Conference on , pp. 1-6, Dec. 2012.
[4] Chun-Cheng Lin, Chun-Min Yang, ” Heartbeat Classification using Normalized RR Intervals and Wavelet Features”, pp. 650-653, Jun. 2014.
[5] Shivajirao M. Jadhav, Sanjay L. Nalbalwar, Ashok A. Ghatol, ” ECG Arrhythmia Classification using Modular Neural Network Model”, Biomedical Engineering and Sciences (IECBES), 2010 IEEE EMBS Conference on, pp. 62-66, Dec. 2010.
[6] S. M. Jadhav, Dr. S. L. Nalbalwar, Dr. Ashok Ghatol, ” Artificial Neural Network Based Cardiac Arrhythmia Classification Using ECG Signal Data”, Electronics and Information Engineering (ICEIE), 2010 International Conference On, vol.1, pp. V1-228-V1-231, Aug. 2010.
[7] Komal Waseem, Awais Javed, Rashad Ramzan, Muddassar Faroo, ” Using Evolutionary Algorithms for ECG Arrhythmia Detection and Classification”, Computer Modeling and Simulation, 2009. EMS ′09. Third UKSim European Symposium on, pp. 112-117, Nov. 2009.
[8] Stanislaw Osowski, Stanislaw Osowski, Robert Siroic, Krzysztof Siwek,” Genetic Algorithm for Integration of Ensemble of Classifiers in Arrhythmia Recognition”, Instrumentation and Measurement Technology Conference, 2009. I2MTC ′09. IEEE , pp. 1496-1500 , May. 2009.
[9] Jalal A. Nasiri, Mahmoud Naghibzadeh, H. Sadoghi Yazdi, Bahram Naghibzadeh, ” ECG Arrhythmia Classification with Support Vector Machines and Genetic Algorithm”, Computer Modeling and Simulation, 2009. EMS ′09. Third UKSim European Symposium on, pp. 187-192, Nov. 2009.
[10] Stockman G C, Kanal L N. Problem reduction representation for the linguistic analysis of waveforms[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 1983 (3):287-298.
[11] Kundu M, Nasipuri M, Basu D K, et al. A reasoning system for on-line interpretation of ECG signal[C]. Proceedings. Computer, Communication, Control and Power Engineering.1993 IEEE Region 10 Conference on. IEEE, 1993, 2: 626-630.
[12] Kundu M, Nasipuri M, Basu D K. Knowledge-based ECG interpretation: a critical review[J].Pattern Recognition, 2000, 33(3): 351-373.
[13] Karimifard S, Ahmadian A, Khoshnevisan M, et al. Morphological heart arrhythmia detection using hermitian basis functions and kNN classifier[C]. Engineering in Medicine and Biology Society, 2006. EMBS′06. 28th Annual International Conference of the IEEE.IEEE, 2006: 1367-1370.
[14] 劉雄飛, 晏晨偉, 胡志坤. 基於數學形態學及支援向量機的心率失常識別[J]. 電腦應用, 2013, 33(4):1173-1175.
[15] Song M H, Lee J, Cho S P, et al. Support vector machine based arrhythmia classification using reduced features[J]. International Journal of Control Automation and Systems, 2005,3(4): 571.
[16] 湯麗平, 張健, 劉劍,等. 基於支持向量機的心律失常診斷研究[J]. 鐳射雜誌, 2012,33(4):80-82.
[17] Homaeinezhad M R, Atyabi S A, Tavakkoli E, et al. ECG arrhythmia recognition via a neuro-SVM–KNN hybrid classifier with virtual QRS image-based geometrical features[J]. Expert Systems with Applications, 2012, 39(2): 2047-2058.
[18] Tran H L, Pham V N, Vuong H N. Multiple neural network integration using a binary decision tree to improve the ECG signal recognition accuracy[J]. International Journal of Applied Mathematics and Computer Science, 2014, 24(3): 647-655.
[19] Alickovic E, Subasi A. Effect of multiscale PCA de-noising in ECG beat classification for diagnosis of cardiovascular diseases[J]. Circuits, Systems, and Signal Processing, 2015, 34(2): 513-533.
[20] Tran H L, Pham V N, Vuong H N. Multiple neural network integration using a binary decision tree to improve the ECG signal recognition accuracy[J]. International Journal of Applied Mathematics and Computer Science, 2014, 24(3): 647-655.
[21] Javadi M, Arani SA, Sajedin A, et al. Classification of ECG arrhythmia by a modular neural network based on mixture of experts and negatively correlated learning[J]. Biomedical Signal Processing and Control. 2013, 8(3):289-96.
[22] Silipo R, Marchesi C. Artificial neural networks for automatic ECG analysis[J]. Signal Processing, IEEE Transactions on, 1998, 46(5): 1417-1425.
[23] Fitria D, Ma′sum MA, Imah EM, et al. Automatic arrhythmias detection using various types of artificial neural network based learning vector quantization (LVQ)[J]. Jurnal Ilmu Komputer dan Informasi. 2014, 7(2):93-103.
[24] Martis RJ, Acharya UR, Min LC. ECG beat classification using PCA, LDA, ICA and Discrete Wavelet Transform[J]. Biomedical Signal Processing and Control. 2013, 8(5):437- 48.
[25] Rai HM, Trivedi A, Shukla S. ECG signal processing for abnormalities detection using multi-resolution wavelet transform and Artificial Neural Network classifier[J]. Measurement. 2013, 46(9):3238-46.
[26] Wang J S, Chiang W C, Hsu Y L, et al. ECG arrhythmia classification using a probabilistic neural network with a feature reduction method[J]. Neurocomputing, 2013, 116: 38-45.
[27]Zihlmann, Martin et al., "Convolutional Recurrent Neural Networks for Electrocardiogram Classification." arXiv preprint rXiv:1710.06122 (2017).
[28] Warrick, Philip, and Masun Nabhan Homsi, "Cardiac Arrhythmia Detection from ECG Combining Convolutiol and Long Short-Term Memory Networks
[29]Soliński, Mateusz et al., "Classification of Atrial Fibrillation in Short-term ECG Recordings Using a Machine Learning Approach and Hybrid QRS Detection.", Computing 44 (2017).
[30] Maknickas et al., "Atrial Fibrillation Classification Using QRS Complex Features and LSTM.", Computing 44 (2017).
[31] By Wapcaplet - Own work, CC BY-SA 3.0, File:Diagram of the human heart (cropped).svg
[32]https://www.favoriteplus.com/prodimages/FP-RMH/handheld-ECG-FP-RMH-manual.pdf
[33] https://ya-webdesign.com/explore/ekg-drawing-anatomical-heart/
[34]https://www.cablesandsensors.com/pages/12-lead-ecg-placement-guide-with-illustrations
[35]https://www.dcbiomed.com/proimages/materials/Brochures_and_related_Articles/Introductory_guide_to_ECG_C2_0-950820.pdf
[36]https://subscription.packtpub.com/book/big_data_and_business_intelligence/9781785880360/1/ch01lvl1sec11/the-history-and-rise-of-deep-learning
[37]https://www.wandouip.com/t5i256938/
[38]http://www.programmersought.com/article/5764149301/
[39]https://medium.com/datadriveninvestor/neural-network-and-dropouts-b6690c869a18
[40]https://physionet.org/cgi-bin/atm/ATM?database=mitdb&tool=plot_waveforms
[41]https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/scipy.signal.resample_poly.html
[42]A Real-Time QRS Detection Algorithm JIAPU PAN AND WILLIS J. TOMPKINS, SENIOR MEMBER, IEEE-IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. BME-32, NO. 3, MARCH 1985
[43]Sequential algorithm for life threatening cardiac pathologies detection based on mean signal strength and EMD functions - Emran M Abu Anas, Soo Y Lee, Md K Hasan
[44]TensorFlow+Keras深度學習人工智慧實務應用 作者: 林大貴 出版社:博碩 出版日期:2017/06/09
[45] https://keras.io/callbacks/#earlystopping
[46]Vapnik, V. Support-vector networks. Machine Learning. 1995, 20 (3): 273–297. doi:10.1007/BF00994018
[47]https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html |