參考文獻 |
Bibliography
[1] Mikael Afzelius, Imam Usmani, Atia Amari, Björn Lauritzen, Andreas Walther, Christoph Simon, Nicolas Sangouard, Jiří Minář, Hugues De Riedmatten, Nicolas Gisin, et al. Demonstration of atomic frequency comb memory for light with spin-wave storage. Physical review letters, 104(4): 040503, 2010.
[2] Igor Aharonovich, Dirk Englund, and Milos Toth. Solid-state single-photon emitters. Nature Photonics, 10(10):631, 2016.
[3] Jürgen Appel, Eden Figueroa, Dmitry Korystov, M Lobino, and AI Lvovsky. Quantum memory for squeezed light. Physical review letters, 100(9):093602, 2008.
[4] S. H. Autler and C. H. Townes. Stark effect in rapidly varying fields. Phys. Rev., 100:703–722, Oct 1955. doi: 10.1103/PhysRev.100.703. URL https://link.aps.org/doi/10.1103/PhysRev.100.703.
[5] K-J Boller, A Imamoğlu, and Stephen E Harris. Observation of electromagnetically induced trans- parency. Physical Review Letters, 66(20):2593, 1991.
[6] V Boyer, CF McCormick, Ennio Arimondo, and Paul D Lett. Ultraslow propagation of matched pulses by four-wave mixing in an atomic vapor. Physical review letters, 99(14):143601, 2007.
[7] R Hanbury Brown and RQ Twiss. A test of a new type of stellar interferometer on sirius. Nature, 178(4541):1046–1048, 1956.
[8] Graham David Bruce, Elmar Haller, Bruno Peaudecerf, Dylan A Cotta, Manuel Andia, Saijun Wu, Matthew YH Johnson, Brendon William Lovett, and Stefan Kuhr. Sub-doppler laser cooling of 40k with raman gray molasses on the line. Journal of Physics B: Atomic, Molecular and Optical Physics, 50(9):095002, 2017.
[9] Félix Bussières, Nicolas Sangouard, Mikael Afzelius, Hugues De Riedmatten, Christoph Simon, and Wolfgang Tittel. Prospective applications of optical quantum memories. Journal of Modern Optics, 60(18):1519–1537, 2013.
[10] Yi-Hsin Chen, Meng-Jung Lee, I-Chung Wang, Shengwang Du, Yong-Fan Chen, Ying-Cheng Chen, and Ite A. Yu. Coherent optical memory with high storage efficiency and large fractional delay. Phys. Rev. Lett., 110:083601, Feb 2013. doi: 10.1103/. URL https://link.aps.org/doi/10.1103/ PhysRevLett.110.083601.
[11] Yong-Fan Chen, Yu-Chen Liu, Zen-Hsiang Tsai, Shih-Hao Wang, and A Yu Ite. Beat-note interfer- ometer for direct phase measurement of photonic information. Physical Review A, 72(3):033812, 2005.
[12] Yong-Fan Chen, Yee-Mou Kao, Wei-Hsun Lin, and A Yu Ite. Phase variation and shape distortion of light pulses in electromagnetically induced transparency media. Physical Review A, 74(6): 063807, 2006.
[13] Y-W Cho, GT Campbell, JL Everett, J Bernu, DB Higginbottom, MT Cao, J Geng, NP Robins, PK Lam, and BC Buchler. Highly efficient optical quantum memory with long coherence time in cold atoms. Optica, 3(1):100–107, 2016.
[14] Chih-Sung Chuu and SE Harris. Ultrabright backward-wave biphoton source. Physical Review A, 83(6):061803, 2011.
[15] Chih-Sung Chuu, GY Yin, and SE Harris. A miniature ultrabright source of temporally long, narrowband biphotons. Applied Physics Letters, 101(5):051108, 2012.
[16] John F Clauser. Experimental distinction between the quantum and classical field-theoretic pre- dictions for the photoelectric effect. Physical Review D, 9(4):853, 1974.
[17] Giacomo Colzi, Gianmaria Durastante, Eleonora Fava, Simone Serafini, Giacomo Lamporesi, and Gabriele Ferrari. Sub-doppler cooling of sodium atoms in gray molasses. Physical Review A, 93 (2):023421, 2016.
[18] L-M Duan, MD Lukin, J Ignacio Cirac, and Peter Zoller. Long-distance quantum communication with atomic ensembles and linear optics. Nature, 414(6862):413, 2001.
[19] D Rio Fernandes, Franz Sievers, Norman Kretzschmar, Saijun Wu, Christophe Salomon, and Frédéric Chevy. Sub-doppler laser cooling of fermionic 40k atoms in three-dimensional gray optical molasses. EPL (Europhysics Letters), 100(6):63001, 2012.
[20] Michael Fleischhauer and Mikhail D Lukin. Dark-state polaritons in electromagnetically induced transparency. Physical review letters, 84(22):5094, 2000.
[21] Naomi S Ginsberg, Sean R Garner, and Lene Vestergaard Hau. Coherent control of optical infor- mation with matter wave dynamics. Nature, 445(7128):623, 2007.
[22] Alexey V Gorshkov, Axel André, Michael Fleischhauer, Anders S Sørensen, and Mikhail D Lukin. Universal approach to optimal photon storage in atomic media. Physical review letters, 98(12): 123601, 2007.
[23] Alexey V Gorshkov, Axel André, Mikhail D Lukin, and Anders S Sørensen. Photon storage in ?-type optically dense atomic media. ii. free-space model. Physical Review A, 76(3):033805, 2007.
[24] Andrew T Grier, Igor Ferrier-Barbut, Benno S Rem, Marion Delehaye, Lev Khaykovich, Frédéric Chevy, and Christophe Salomon. ?-enhanced sub-doppler cooling of lithium atoms in d1 gray molasses. Physical Review A, 87(6):063411, 2013.
[25] Jinxian Guo, Xiaotian Feng, Peiyu Yang, Zhifei Yu, LQ Chen, Chun-Hua Yuan, and Weiping Zhang. High-performance raman quantum memory with optimal control in room temperature atoms. Nature communications, 10(1):148, 2019.
[26] SE Harris and Y Yamamoto. Photon switching by quantum interference. Physical review letters, 81(17):3611, 1998.
[27] Morgan P Hedges, Jevon J Longdell, Yongmin Li, and Matthew J Sellars. Efficient quantum memory for light. Nature, 465(7301):1052, 2010.
[28] Mahdi Hosseini, Geoff Campbell, Ben M Sparkes, Ping K Lam, and Ben C Buchler. Unconditional room-temperature quantum memory. Nature Physics, 7(10):794, 2011.
[29] Ya-Fen Hsiao, Hung-Shiue Chen, Pin-Ju Tsai, and Ying-Cheng Chen. Cold atomic media with ultrahigh optical depths. Physical Review A, 90(5):055401, 2014.
[30] Ya-Fen Hsiao, Pin-Ju Tsai, Chi-Ching Lin, Yong-Fan Chen, A Yu Ite, and Ying-Cheng Chen. Coherence properties of amplified slow light by four-wave mixing. Optics letters, 39(12):3394– 3397, 2014.
[31] Ya-Fen Hsiao, Yu-Ju Lin, and Ying-Cheng Chen. ?-enhanced gray-molasses cooling of cesium atoms on the d 2 line. Physical Review A, 98(3):033419, 2018.
[32] Ya-Fen Hsiao, Pin-Ju Tsai, Hung-Shiue Chen, Sheng-Xiang Lin, Chih-Chiao Hung, Chih-Hsi Lee, Yi-Hsin Chen, Yong-Fan Chen, A Yu Ite, and Ying-Cheng Chen. Highly efficient coherent opti- cal memory based on electromagnetically induced transparency. Physical review letters, 120(18): 183602, 2018.
[33] H Jeff Kimble. The quantum internet. Nature, 453(7198):1023, 2008.
[34] Nikolai Lauk, Christopher O’Brien, and Michael Fleischhauer. Fidelity of photon propagation in electromagnetically induced transparency in the presence of four-wave mixing. Physical Review A, 88(1):013823, 2013.
[35] Wen-Te Liao, Christoph H Keitel, and Adriana Pálffy. All-electromagnetic control of broadband quantum excitations using gradient photon echoes. Physical review letters, 113(12):123602, 2014.
[36] G-D Lin and SF Yelin. Superradiance in spin-j particles: Effects of multiple levels. Physical Review A, 85(3):033831, 2012.
[37] Yen-Wei Lin, Hung-Chih Chou, Prashant P Dwivedi, Ying-Cheng Chen, and A Yu Ite. Using a pair of rectangular coils in the mot for the production of cold atom clouds with large optical density. Optics express, 16(6):3753–3761, 2008.
[38] M Lobino, C Kupchak, Eden Figueroa, and AI Lvovsky. Memory for light as a quantum process. Physical review letters, 102(20):203601, 2009.
[39] A Lohrmann, S Castelletto, JR Klein, T Ohshima, M Bosi, M Negri, DWM Lau, BC Gibson, S Prawer, JC McCallum, et al. Activation and control of visible single defects in 4h-, 6h-, and 3c-sic by oxidation. Applied Physics Letters, 108(2):021107, 2016.
[40] V. Loriot, E. Hertz, O. Faucher, and B. Lavorel. Measurement of high order kerr refractive index of major air components: erratum. Opt. Express, 18(3):3011–3012, Feb 2010. doi: 10.1364/OE.18. 003011. URL http://www.opticsexpress.org/abstract.cfm?URI=oe-18-3-3011.
[41] P Michler, A Kiraz, C Becher, WV Schoenfeld, PM Petroff, Lidong Zhang, E Hu, and A Imamoglu. A quantum dot single-photon turnstile device. science, 290(5500):2282–2285, 2000.
[42] Dipankar Nath, R Kollengode Easwaran, G Rajalakshmi, and CS Unnikrishnan. Quantum- interference-enhanced deep sub-doppler cooling of 39 k atoms in gray molasses. Physical Review A, 88(5):053407, 2013.
[43] Irina Novikova, Alexey V Gorshkov, David F Phillips, Anders S Sørensen, Mikhail D Lukin, and Ronald L Walsworth. Optimal control of light pulse storage and retrieval. Physical Review Letters, 98(24):243602, 2007.
[44] J Nunn, NK Langford, WS Kolthammer, TFM Champion, MR Sprague, PS Michelberger, X-M Jin, DG England, and IA Walmsley. Enhancing multiphoton rates with quantum memories. Physical review letters, 110(13):133601, 2013.
[45] Junji Okuma, Nobuhito Hayashi, Akihiko Fujisawa, and Masaharu Mitsunaga. Ultraslow matched- pulse propagation in sodium vapor. Optics letters, 34(11):1654–1656, 2009.
[46] Thorsten Peters, Yi-Hsin Chen, Jian-Siung Wang, Yen-Wei Lin, and A Yu Ite. Optimizing the retrieval efficiency of stored light pulses. Optics express, 17(8):6665–6675, 2009.
[47] Nathaniel B Phillips, Alexey V Gorshkov, and Irina Novikova. Optimal light storage in atomic vapor. Physical Review A, 78(2):023801, 2008.
[48] Nathaniel B Phillips, Alexey V Gorshkov, and Irina Novikova. Light storage in an optically thick atomic ensemble under conditions of electromagnetically induced transparency and four-wave mix- ing. Physical Review A, 83(6):063823, 2011.
[49] KF Reim, P Michelberger, KC Lee, J Nunn, NK Langford, and IA Walmsley. Single-photon-level quantum memory at room temperature. Physical Review Letters, 107(5):053603, 2011.
[50] Sara Rosi, Alessia Burchianti, Stefano Conclave, Devang S Naik, Giacomo Roati, Chiara Fort, and Francesco Minardi. ?-enhanced grey molasses on the d 2 transition of rubidium-87 atoms. Scientific reports, 8(1):1301, 2018.
[51] Nicolas Sangouard, Christoph Simon, Hugues De Riedmatten, and Nicolas Gisin. Quantum re- peaters based on atomic ensembles and linear optics. Reviews of Modern Physics, 83(1):33, 2011.
[52] H Schmidt and A Imamoglu. Giant kerr nonlinearities obtained by electromagnetically induced transparency. Optics letters, 21(23):1936–1938, 1996.
[53] Daniel Schraft, Marcel Hain, Nikolaus Lorenz, and Thomas Halfmann. Stopped light at high storage efficiency in a pr ∶ y sio crystal. Phys. Rev. Lett., 116:073602, Feb 2016. doi: 10.1103/ PhysRevLett.116.073602. URL https://link.aps.org/doi/10.1103/PhysRevLett.116.073602.
[54] Zhenlian Shi, Ziliang Li, Pengjun Wang, Zengming Meng, Lianghui Huang, and Jing Zhang. Sub- doppler laser cooling of 23na in gray molasses on the d 2 line. Chinese Physics Letters, 35(12): 123701, 2018.
[55] Daniel A Steck. Cesium d line data, 2003.
[56] Nuala Timoney, Imam Usmani, Pierre Jobez, Mikael Afzelius, and Nicolas Gisin. Single-photon- level optical storage in a solid-state spin-wave memory. Physical Review A, 88(2):022324, 2013.
[57] CG Townsend, NH Edwards, KP Zetie, CJ Cooper, J Rink, and CJ Foot. High-density trapping of cesium atoms in a dark magneto-optical trap. Physical Review A, 53(3):1702, 1996.
[58] Toan Trong Tran, Kerem Bray, Michael J Ford, Milos Toth, and Igor Aharonovich. Quantum emission from hexagonal boron nitride monolayers. Nature nanotechnology, 11(1):37, 2016.
[59] Pin-Ju Tsai. Development of photon-pair source and quantum storage of heralded single photons in the atomic quantum memories. Ph.D thesis, National Taiwan University, 2019.
[60] Pin-Ju Tsai and Ying-Cheng Chen. Ultrabright, narrow-band photon-pair source for atomic quan- tum memories. Quantum Science and Technology, 3(3):034005, 2018.
[61] Pierre Vernaz-Gris, Kun Huang, Mingtao Cao, Alexandra S Sheremet, and Julien Laurat. Highly- efficient quantum memory for polarization qubits in a spatially-multiplexed cold atomic ensemble. Nature communications, 9(1):363, 2018.
[62] Vladan Vuletić, Cheng Chin, Andrew J Kerman, and Steven Chu. Degenerate raman sideband cooling of trapped cesium atoms at very high atomic densities. Physical Review Letters, 81(26): 5768, 1998.
[63] Han Zhang, Xian-Min Jin, Jian Yang, Han-Ning Dai, Sheng-Jun Yang, Tian-Ming Zhao, Jun Rui, Yu He, Xiao Jiang, Fan Yang, et al. Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion. Nature Photonics, 5(10): 628, 2011.
[64] Shanchao Zhang, Shuyu Zhou, Michael MT Loy, George Ke Lun Wong, and Shengwang Du. Optical storage with electromagnetically induced transparency in a dense cold atomic ensemble. Optics letters, 36(23):4530–4532, 2011.
[65] Bo Zhao, Yu-Ao Chen, Xiao-Hui Bao, Thorsten Strassel, Chih-Sung Chuu, Xian-Min Jin, Jörg Schmiedmayer, Zhen-Sheng Yuan, Shuai Chen, and Jian-Wei Pan. A millisecond quantum memory for scalable quantum networks. Nature Physics, 5(2):95, 2009.
[66] Shuyu Zhou, Shanchao Zhang, Chang Liu, JF Chen, Jianming Wen, MMT Loy, George Ke Lun Wong, and Shengwang Du. Optimal storage and retrieval of single-photon waveforms. Optics express, 20(22):24124–24131, 2012. |