博碩士論文 103222038 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:104 、訪客IP:18.188.23.114
姓名 蕭雅棻(Ya-Fen Hsiao)  查詢紙本館藏   畢業系所 物理學系
論文名稱 利用電磁波引發透明效應實現量子記憶體高存取效率
(Towards High Storage Efficiency of Optical Quantum Memory Based on Electromagnetically Induced Transparency Protocol)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 量子記憶體是一個專門為讓量子態或量子糾纏存取的必要元件,也是量子計算和長距離量子傳輸中的不可或缺的重要元件之一。量子記憶體在近幾年也快速成長,目前量子記憶體已成功實現量子態在量子記憶體存取具有多模態長時間及高保真度和高效率的存取。在本論文中將主要說明與介紹如何利用電磁波引發透明效應實現量子記憶體高存取率。為了達成這個目標,高光學密度及基態之低非同調率為重要的關鍵。在本文中將仔細介紹在電磁波引發透明效應的實驗系統中,如何實現量子光學記憶體達92%。然而在高光學密度的系統下非線性光學的效應也引入在此系統中,例如光子開關效應和四波混頻效應。這兩種效應將會顯著將降低量子記憶體的存取效率和保真度。針對電磁波引發透明效應的原子系統下我們提出解決此兩個效應的方法。首先我們利用塞曼光學幫浦將原子分佈集中在近似單一的塞曼能階中,此動作可以大幅減少光子開關效應的影響。此外我們也藉由改變探測光和控制光的相對相位角度來破壞四波混頻系統中的相位匹配條件,這將可以避免四波混頻效應對於量子光學記憶體保真度的影響。為了真實實現量子態的存取,我們利用週期性之非線性晶體建立了自發性參量下轉換之共振腔的單光子源。我們也使用條件性的量測方法來診斷單光子的相對巧合函數值?(2)。透過此量測方法的量測,我們可以透過計算量子態在量子光學記憶體中的存取效率。在本實驗中已經實現量子態在量子記憶體之存取效率為35% 且相對巧合函數值?(2)為 7.6。
摘要(英) Quantum memory is a device that can store quantum state or quantum entanglement and replay on demand. It is a crucial component in linear-optics-based quantum computation and long-distance quan- tum communication. There have been tremendous progress in the development of quantum memories, for example, quantum memories with long storage time, high efficiency, and high fidelity or of highly multimode have been developed. The fundamental requirements to achieve high storage efficiency are atomic media with high optical depths and low ground-state decoherence rates. However, at high optical depths, nonlinear optical effects such as photon switching and four-wave mixing may become signifi- cant and lead to the degradation of storage efficiency or fidelity of the optical memory. In this thesis we attempt to solve this problem by focusing on developing a high storage efficiency optical quantum memory base on the electromagnetically induced transparency (EIT) protocol. We will describe our development on the EIT protocol experimental apparatus and the method to achieve a storage efficiency of 92% in EIT-based coherent optical memory. By implementing the EIT memory in cesium D1 tran- sition and performing Zeeman optical pumping to prepare population in nearly single Zeeman state, the photon switching effect can be minimized.Furthermore, the introduction of a small angle between the control and probe beams to break the phase matching condition, the four-wave mixing effect can be significantly reduced. To enter the quantum storage regime, we developed a photon-pair source based on cavity-enhanced spontaneous parametric down conversion using periodical polled KTP crys- tal. Through coincidental measuring of the photon pairs and determining the cross-correlation function ? (?) before and after the storage process in memory, we were able to demonstrate that the quantum nature of the photon pairs can be preserved in EIT-memory. With such method, quantum storage of heralded single photons with an efficiency of 35% and a ? (?) of 7.6 can be achieved.
關鍵字(中) ★ 單光子源
★ 量子記憶體
★ 雷射冷卻
★ 磁光陷阱
★ 電磁波引發透明效應
關鍵字(英) ★ single photon source
★ quantum memory
★ electromagnetically induced transparency
★ laser cooling
★ magneto-optical trap
論文目次 Abstract iii
Acknowledgments v
List of Figures vii
1 Introduction 1
1.1 Research area of optical quantum memory 1
1.2 Overview.. 1
2 Theoretical basics 5
2.1 Two-level system ..5
2.1.1 Density matrix and optical Bloch equation .. 5
2.1.2 Continues wave transmission and phase change 7
2.2 Three-level system 8
2.2.1 Electromagnetically Induced Transparency(EIT). . 8
2.2.2 Slow light and light storage ..10
2.3 EIT based optical quantum memory.11
2.4 Quantum state and measurement.13
2.4.1 Second-order correlation function..13
2.4.2 Bunched, coherent, and antibunched light 13
2.4.3 Single photon source..14
3 Experimental apparatus with ultrahigh optical depths 17
3.1 Magneto-optical trap(MOT) of Cesium..17
3.1.1 Hyperfine transition of trapping and cooling lasers 17
3.1.2 Zemman effect of Magneto-optical trap..18
3.2 Experimental setup.19
3.2.1 Laser system19
3.2.2 Vacuum system21
3.2.3 MOT magnetic coils and compensation magnetic coils..21
3.3 Cold atomic media with ultrahigh optical depths .24
3.3.1 Magneto-optical trap with cigar-shape atomic clouds 24
3.3.2 Improving optical depth ..24
3.4 Measurement of ultra-high optical depth27
4 Coherence properties of amplified slow light induced by four-wave-mixing 31
4.1 Introduction..31
4.1.1 Four-wave-mixing strength 33
4.1.2 Noise within four-wave-mixing.33
4.1.3 Phase match conditions..35
4.2 Experimental setup.35
4.3 Observation of the four-wave-mixing..38
4.4 Four-wave-mixing gain dependence on various parameters39
4.5 Conclusion..42
5 High storage efficiency of coherent optical memory based on EIT system 43
5.1 Experimental approach..43
5.1.1 Reduced coherence rate44
5.1.2 Diagnosed population at |6? / ,?=4⟩.44
5.1.3 Population at Zeeman sublevel of hyperfine state..46
5.2 Photon switching effect46
5.2.1 Theoretical background of photon switching effect.47
5.2.2 Experimental observation of the photon switching effect48
5.3 Diagnostics of the four-wave-mixing effect50
5.3.1 Experimental results..51
5.4 Measuring storage efficiency and storage time51
5.4.1 storage efficiency.51
5.4.2 storage time54
5.5 Conclusion.54
6 Experimental apparatus with 3D MOT and photon-pair source 55
6.1 3D MOT system..55
6.1.1 Laser system.55
6.1.2 Vacuum system56
6.1.3 MOT magnetic coils and compensation magnetic coils 56
6.2 Lambda-enhanced gray molasses cooling in 3D MOT.59
6.2.1 Experimental setup.60
6.2.2 Imaging system60
6.2.3 Measurement of the atom temperature.63
6.2.4 Conclusion.65
6.3 Photon-pair source for atomic quantum memories65
6.3.1 Single photon source.67
6.3.2 Frequency tuning and stabilization 67
6.3.3 The characterization of the photon pair68
6.3.4 Conclusion..68
7 Towards optical quantum memory based on EIT system 69
7.1 Experimental approach69
7.2 The cross-correlation function and coincidence count.72
7.2.1 Glauber correlation function72
7.2.2 Measurement of the coincidence count72
7.3 Optical quantum memory ..73
7.3.1 EIT spectrum with quantum light.73
7.3.2 Optical quantum memory in atomic ensemble 73
7.3.3 Storage time..74
7.4 Controlling the EIT bandwidth by quantum memory 75
7.4.1 Transparency bandwidth in EIT medium 75
7.4.2 Experimental results..76
7.5 Conclusion.77
8 Summary and conclusion 79
Bibliography 83
參考文獻 Bibliography
[1] Mikael Afzelius, Imam Usmani, Atia Amari, Björn Lauritzen, Andreas Walther, Christoph Simon, Nicolas Sangouard, Jiří Minář, Hugues De Riedmatten, Nicolas Gisin, et al. Demonstration of atomic frequency comb memory for light with spin-wave storage. Physical review letters, 104(4): 040503, 2010.
[2] Igor Aharonovich, Dirk Englund, and Milos Toth. Solid-state single-photon emitters. Nature Photonics, 10(10):631, 2016.
[3] Jürgen Appel, Eden Figueroa, Dmitry Korystov, M Lobino, and AI Lvovsky. Quantum memory for squeezed light. Physical review letters, 100(9):093602, 2008.
[4] S. H. Autler and C. H. Townes. Stark effect in rapidly varying fields. Phys. Rev., 100:703–722, Oct 1955. doi: 10.1103/PhysRev.100.703. URL https://link.aps.org/doi/10.1103/PhysRev.100.703.
[5] K-J Boller, A Imamoğlu, and Stephen E Harris. Observation of electromagnetically induced trans- parency. Physical Review Letters, 66(20):2593, 1991.
[6] V Boyer, CF McCormick, Ennio Arimondo, and Paul D Lett. Ultraslow propagation of matched pulses by four-wave mixing in an atomic vapor. Physical review letters, 99(14):143601, 2007.
[7] R Hanbury Brown and RQ Twiss. A test of a new type of stellar interferometer on sirius. Nature, 178(4541):1046–1048, 1956.
[8] Graham David Bruce, Elmar Haller, Bruno Peaudecerf, Dylan A Cotta, Manuel Andia, Saijun Wu, Matthew YH Johnson, Brendon William Lovett, and Stefan Kuhr. Sub-doppler laser cooling of 40k with raman gray molasses on the line. Journal of Physics B: Atomic, Molecular and Optical Physics, 50(9):095002, 2017.
[9] Félix Bussières, Nicolas Sangouard, Mikael Afzelius, Hugues De Riedmatten, Christoph Simon, and Wolfgang Tittel. Prospective applications of optical quantum memories. Journal of Modern Optics, 60(18):1519–1537, 2013.
[10] Yi-Hsin Chen, Meng-Jung Lee, I-Chung Wang, Shengwang Du, Yong-Fan Chen, Ying-Cheng Chen, and Ite A. Yu. Coherent optical memory with high storage efficiency and large fractional delay. Phys. Rev. Lett., 110:083601, Feb 2013. doi: 10.1103/. URL https://link.aps.org/doi/10.1103/ PhysRevLett.110.083601.
[11] Yong-Fan Chen, Yu-Chen Liu, Zen-Hsiang Tsai, Shih-Hao Wang, and A Yu Ite. Beat-note interfer- ometer for direct phase measurement of photonic information. Physical Review A, 72(3):033812, 2005.
[12] Yong-Fan Chen, Yee-Mou Kao, Wei-Hsun Lin, and A Yu Ite. Phase variation and shape distortion of light pulses in electromagnetically induced transparency media. Physical Review A, 74(6): 063807, 2006.
[13] Y-W Cho, GT Campbell, JL Everett, J Bernu, DB Higginbottom, MT Cao, J Geng, NP Robins, PK Lam, and BC Buchler. Highly efficient optical quantum memory with long coherence time in cold atoms. Optica, 3(1):100–107, 2016.
[14] Chih-Sung Chuu and SE Harris. Ultrabright backward-wave biphoton source. Physical Review A, 83(6):061803, 2011.
[15] Chih-Sung Chuu, GY Yin, and SE Harris. A miniature ultrabright source of temporally long, narrowband biphotons. Applied Physics Letters, 101(5):051108, 2012.
[16] John F Clauser. Experimental distinction between the quantum and classical field-theoretic pre- dictions for the photoelectric effect. Physical Review D, 9(4):853, 1974.
[17] Giacomo Colzi, Gianmaria Durastante, Eleonora Fava, Simone Serafini, Giacomo Lamporesi, and Gabriele Ferrari. Sub-doppler cooling of sodium atoms in gray molasses. Physical Review A, 93 (2):023421, 2016.
[18] L-M Duan, MD Lukin, J Ignacio Cirac, and Peter Zoller. Long-distance quantum communication with atomic ensembles and linear optics. Nature, 414(6862):413, 2001.
[19] D Rio Fernandes, Franz Sievers, Norman Kretzschmar, Saijun Wu, Christophe Salomon, and Frédéric Chevy. Sub-doppler laser cooling of fermionic 40k atoms in three-dimensional gray optical molasses. EPL (Europhysics Letters), 100(6):63001, 2012.
[20] Michael Fleischhauer and Mikhail D Lukin. Dark-state polaritons in electromagnetically induced transparency. Physical review letters, 84(22):5094, 2000.
[21] Naomi S Ginsberg, Sean R Garner, and Lene Vestergaard Hau. Coherent control of optical infor- mation with matter wave dynamics. Nature, 445(7128):623, 2007.
[22] Alexey V Gorshkov, Axel André, Michael Fleischhauer, Anders S Sørensen, and Mikhail D Lukin. Universal approach to optimal photon storage in atomic media. Physical review letters, 98(12): 123601, 2007.
[23] Alexey V Gorshkov, Axel André, Mikhail D Lukin, and Anders S Sørensen. Photon storage in ?-type optically dense atomic media. ii. free-space model. Physical Review A, 76(3):033805, 2007.
[24] Andrew T Grier, Igor Ferrier-Barbut, Benno S Rem, Marion Delehaye, Lev Khaykovich, Frédéric Chevy, and Christophe Salomon. ?-enhanced sub-doppler cooling of lithium atoms in d1 gray molasses. Physical Review A, 87(6):063411, 2013.
[25] Jinxian Guo, Xiaotian Feng, Peiyu Yang, Zhifei Yu, LQ Chen, Chun-Hua Yuan, and Weiping Zhang. High-performance raman quantum memory with optimal control in room temperature atoms. Nature communications, 10(1):148, 2019.
[26] SE Harris and Y Yamamoto. Photon switching by quantum interference. Physical review letters, 81(17):3611, 1998.
[27] Morgan P Hedges, Jevon J Longdell, Yongmin Li, and Matthew J Sellars. Efficient quantum memory for light. Nature, 465(7301):1052, 2010.
[28] Mahdi Hosseini, Geoff Campbell, Ben M Sparkes, Ping K Lam, and Ben C Buchler. Unconditional room-temperature quantum memory. Nature Physics, 7(10):794, 2011.
[29] Ya-Fen Hsiao, Hung-Shiue Chen, Pin-Ju Tsai, and Ying-Cheng Chen. Cold atomic media with ultrahigh optical depths. Physical Review A, 90(5):055401, 2014.
[30] Ya-Fen Hsiao, Pin-Ju Tsai, Chi-Ching Lin, Yong-Fan Chen, A Yu Ite, and Ying-Cheng Chen. Coherence properties of amplified slow light by four-wave mixing. Optics letters, 39(12):3394– 3397, 2014.
[31] Ya-Fen Hsiao, Yu-Ju Lin, and Ying-Cheng Chen. ?-enhanced gray-molasses cooling of cesium atoms on the d 2 line. Physical Review A, 98(3):033419, 2018.
[32] Ya-Fen Hsiao, Pin-Ju Tsai, Hung-Shiue Chen, Sheng-Xiang Lin, Chih-Chiao Hung, Chih-Hsi Lee, Yi-Hsin Chen, Yong-Fan Chen, A Yu Ite, and Ying-Cheng Chen. Highly efficient coherent opti- cal memory based on electromagnetically induced transparency. Physical review letters, 120(18): 183602, 2018.
[33] H Jeff Kimble. The quantum internet. Nature, 453(7198):1023, 2008.
[34] Nikolai Lauk, Christopher O’Brien, and Michael Fleischhauer. Fidelity of photon propagation in electromagnetically induced transparency in the presence of four-wave mixing. Physical Review A, 88(1):013823, 2013.
[35] Wen-Te Liao, Christoph H Keitel, and Adriana Pálffy. All-electromagnetic control of broadband quantum excitations using gradient photon echoes. Physical review letters, 113(12):123602, 2014.
[36] G-D Lin and SF Yelin. Superradiance in spin-j particles: Effects of multiple levels. Physical Review A, 85(3):033831, 2012.
[37] Yen-Wei Lin, Hung-Chih Chou, Prashant P Dwivedi, Ying-Cheng Chen, and A Yu Ite. Using a pair of rectangular coils in the mot for the production of cold atom clouds with large optical density. Optics express, 16(6):3753–3761, 2008.
[38] M Lobino, C Kupchak, Eden Figueroa, and AI Lvovsky. Memory for light as a quantum process. Physical review letters, 102(20):203601, 2009.
[39] A Lohrmann, S Castelletto, JR Klein, T Ohshima, M Bosi, M Negri, DWM Lau, BC Gibson, S Prawer, JC McCallum, et al. Activation and control of visible single defects in 4h-, 6h-, and 3c-sic by oxidation. Applied Physics Letters, 108(2):021107, 2016.
[40] V. Loriot, E. Hertz, O. Faucher, and B. Lavorel. Measurement of high order kerr refractive index of major air components: erratum. Opt. Express, 18(3):3011–3012, Feb 2010. doi: 10.1364/OE.18. 003011. URL http://www.opticsexpress.org/abstract.cfm?URI=oe-18-3-3011.
[41] P Michler, A Kiraz, C Becher, WV Schoenfeld, PM Petroff, Lidong Zhang, E Hu, and A Imamoglu. A quantum dot single-photon turnstile device. science, 290(5500):2282–2285, 2000.
[42] Dipankar Nath, R Kollengode Easwaran, G Rajalakshmi, and CS Unnikrishnan. Quantum- interference-enhanced deep sub-doppler cooling of 39 k atoms in gray molasses. Physical Review A, 88(5):053407, 2013.
[43] Irina Novikova, Alexey V Gorshkov, David F Phillips, Anders S Sørensen, Mikhail D Lukin, and Ronald L Walsworth. Optimal control of light pulse storage and retrieval. Physical Review Letters, 98(24):243602, 2007.
[44] J Nunn, NK Langford, WS Kolthammer, TFM Champion, MR Sprague, PS Michelberger, X-M Jin, DG England, and IA Walmsley. Enhancing multiphoton rates with quantum memories. Physical review letters, 110(13):133601, 2013.
[45] Junji Okuma, Nobuhito Hayashi, Akihiko Fujisawa, and Masaharu Mitsunaga. Ultraslow matched- pulse propagation in sodium vapor. Optics letters, 34(11):1654–1656, 2009.
[46] Thorsten Peters, Yi-Hsin Chen, Jian-Siung Wang, Yen-Wei Lin, and A Yu Ite. Optimizing the retrieval efficiency of stored light pulses. Optics express, 17(8):6665–6675, 2009.
[47] Nathaniel B Phillips, Alexey V Gorshkov, and Irina Novikova. Optimal light storage in atomic vapor. Physical Review A, 78(2):023801, 2008.
[48] Nathaniel B Phillips, Alexey V Gorshkov, and Irina Novikova. Light storage in an optically thick atomic ensemble under conditions of electromagnetically induced transparency and four-wave mix- ing. Physical Review A, 83(6):063823, 2011.
[49] KF Reim, P Michelberger, KC Lee, J Nunn, NK Langford, and IA Walmsley. Single-photon-level quantum memory at room temperature. Physical Review Letters, 107(5):053603, 2011.
[50] Sara Rosi, Alessia Burchianti, Stefano Conclave, Devang S Naik, Giacomo Roati, Chiara Fort, and Francesco Minardi. ?-enhanced grey molasses on the d 2 transition of rubidium-87 atoms. Scientific reports, 8(1):1301, 2018.
[51] Nicolas Sangouard, Christoph Simon, Hugues De Riedmatten, and Nicolas Gisin. Quantum re- peaters based on atomic ensembles and linear optics. Reviews of Modern Physics, 83(1):33, 2011.
[52] H Schmidt and A Imamoglu. Giant kerr nonlinearities obtained by electromagnetically induced transparency. Optics letters, 21(23):1936–1938, 1996.
[53] Daniel Schraft, Marcel Hain, Nikolaus Lorenz, and Thomas Halfmann. Stopped light at high storage efficiency in a pr ∶ y sio crystal. Phys. Rev. Lett., 116:073602, Feb 2016. doi: 10.1103/ PhysRevLett.116.073602. URL https://link.aps.org/doi/10.1103/PhysRevLett.116.073602.
[54] Zhenlian Shi, Ziliang Li, Pengjun Wang, Zengming Meng, Lianghui Huang, and Jing Zhang. Sub- doppler laser cooling of 23na in gray molasses on the d 2 line. Chinese Physics Letters, 35(12): 123701, 2018.
[55] Daniel A Steck. Cesium d line data, 2003.
[56] Nuala Timoney, Imam Usmani, Pierre Jobez, Mikael Afzelius, and Nicolas Gisin. Single-photon- level optical storage in a solid-state spin-wave memory. Physical Review A, 88(2):022324, 2013.
[57] CG Townsend, NH Edwards, KP Zetie, CJ Cooper, J Rink, and CJ Foot. High-density trapping of cesium atoms in a dark magneto-optical trap. Physical Review A, 53(3):1702, 1996.
[58] Toan Trong Tran, Kerem Bray, Michael J Ford, Milos Toth, and Igor Aharonovich. Quantum emission from hexagonal boron nitride monolayers. Nature nanotechnology, 11(1):37, 2016.
[59] Pin-Ju Tsai. Development of photon-pair source and quantum storage of heralded single photons in the atomic quantum memories. Ph.D thesis, National Taiwan University, 2019.
[60] Pin-Ju Tsai and Ying-Cheng Chen. Ultrabright, narrow-band photon-pair source for atomic quan- tum memories. Quantum Science and Technology, 3(3):034005, 2018.
[61] Pierre Vernaz-Gris, Kun Huang, Mingtao Cao, Alexandra S Sheremet, and Julien Laurat. Highly- efficient quantum memory for polarization qubits in a spatially-multiplexed cold atomic ensemble. Nature communications, 9(1):363, 2018.
[62] Vladan Vuletić, Cheng Chin, Andrew J Kerman, and Steven Chu. Degenerate raman sideband cooling of trapped cesium atoms at very high atomic densities. Physical Review Letters, 81(26): 5768, 1998.
[63] Han Zhang, Xian-Min Jin, Jian Yang, Han-Ning Dai, Sheng-Jun Yang, Tian-Ming Zhao, Jun Rui, Yu He, Xiao Jiang, Fan Yang, et al. Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion. Nature Photonics, 5(10): 628, 2011.
[64] Shanchao Zhang, Shuyu Zhou, Michael MT Loy, George Ke Lun Wong, and Shengwang Du. Optical storage with electromagnetically induced transparency in a dense cold atomic ensemble. Optics letters, 36(23):4530–4532, 2011.
[65] Bo Zhao, Yu-Ao Chen, Xiao-Hui Bao, Thorsten Strassel, Chih-Sung Chuu, Xian-Min Jin, Jörg Schmiedmayer, Zhen-Sheng Yuan, Shuai Chen, and Jian-Wei Pan. A millisecond quantum memory for scalable quantum networks. Nature Physics, 5(2):95, 2009.
[66] Shuyu Zhou, Shanchao Zhang, Chang Liu, JF Chen, Jianming Wen, MMT Loy, George Ke Lun Wong, and Shengwang Du. Optimal storage and retrieval of single-photon waveforms. Optics express, 20(22):24124–24131, 2012.
指導教授 陳應誠(Ying-Cheng Chen) 審核日期 2019-10-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明