博碩士論文 90322028 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:3.15.186.248
姓名 鍾明劍(Ming-Chien Chung)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 樁基礎最佳化設計之研究
(Optimum Design of Piled Foundations)
相關論文
★ PSO-DE混合式搜尋法應用於結構最佳化設計的研究★ 考量垂直向效應之多項式摩擦單擺支承之分析與設計
★ 土壤液化評估模式之不確定性★ 以整合力法為分析工具之結構離散輕量化設計效率的探討
★ 最佳化設計於結構被動控制之應用★ 廣域山崩之統計與最佳化分析-以莫拉克風災小林村鄰近地區為例
★ 多項式摩擦單擺支承之二維動力分析與最佳參數研究★ 構件考慮剛域之向量式有限元素分析研究
★ 矩形鋼管混凝土考慮局部挫屈與二次彎矩效應之軸壓-彎矩互制曲線研究★ 橋梁多支承輸入近斷層強地動極限破壞分析
★ 穩健設計於結構被動控制之應用★ 砂土中模型基樁之單向反覆軸向載重試驗
★ 邊坡穩定分析方法之不確定性★ 二維結構與固體動力分析程式之視窗介面的開發
★ 以離心機實驗與隱式動力有限元素法模擬逆斷層滑動★ 以離心模型實驗探討逆斷層錯動下群樁基礎與土壤的互制反應
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究針對場鑄式群樁基礎進行最佳化設計之研究,群樁基礎設計的最佳化數學模型包含七個獨立之離散設計變數,依設計規範要求建立設計變數之束制條件,以工程造價為目標函數進行最低價可行解之搜尋。文中分別以離散拉格朗日法、修正相對差商法、實數編碼遺傳演算法、以及混合式GA演算法進行最佳解之搜尋,並以竭盡搜尋法所得全域最佳解來檢驗各演算法之搜尋性能。透過七個實際案例分析,顯示離散拉格朗日法、修正相對差商法的搜尋成效良好,可穩定地求得一個合理、可靠的近似最佳解,甚至為全域最佳解,且所需時間甚短。實數編碼遺傳演算法及混合式GA演算法於各案例均有機會搜尋至全域最佳解,且其與最佳解之差距較上述兩方法為小,惟所需時間較多。
此外,本文提出一套非線性靜力側推程序,可應用於分析地盤液化流動壓力或位移作用下基樁之非線性側向承載行為,可分析不同液化程度下基樁之側向承載性能狀態,供基樁耐震性能設計之用。文中分別以流動土壓與流動變位兩種加載模式進行現地損害案例的分析比較,探討兩者於非線性靜力側推應用上之差異,結果顯示兩種分析模式皆可合理地掌握基樁於液化流動地盤之受力與變形行為,惟流動土壓分析模式可較簡單地應用於性能設計法。文中以流動土壓分析模式為基礎,提出基樁抵抗液化流動之耐震性能分析流程,可供工程界參考應用。文末則以流動土壓為基礎,提出此問題之簡化分析模式,推導出解析解,並以現地基樁損害案例進行驗證與比較,結果顯示此解析解可合理地掌握側向樁的受力與變形行為,最後以實際案例為例,透過此解析解進行參數研究,探討不同參數之變化對側向樁變形與受力行為之影響。
摘要(英) This thesis presents the application of optimal algorithms to the least cost design of bored piled foundations. The objective function is the combined costs of soil excavation, pile cap, piles, and soil backfill. The design variables, including pile length, pile diameter, depth of pile cap, pile spacing, and pile number, are all discrete. The optimal algorithms include discrete Lagrangian method (DLM), modified relative difference quotient algorithm (MRDQA), real-coded genetic algorithm (RGA), and hybrid genetic algorithm (HGA). The efficiency and validity of the above algorithms have been verified by comparing the solutions with the global optimum solutions obtained from exhaustive search method (ESM).
The comparative results of seven design cases have shown that the mean errors of DLM and MRDQA solutions are around 1.86%, respectively. RGA and HGA can find the optimum solutions from ESM, but they spend more time than DLM or MRDQA. The influences of the unit price of the constructive materials, soil liquefaction, the resistance of pile cap, and the pile-group effect on the optimum solutions are discussed in the thesis.
Furthermore, the thesis presents a simplified nonlinear pushover analysis for the lateral response of the pile subjected to liquefaction-induced flow earth pressure. The pushover analysis can be carried out by incrementally imposing flow pressure or flow displacement on the pile. The capacity curve of the lateral pile was expressed in terms of the total flow forces and the displacement of pile top. The seismic performances corresponding to different liquefaction extents can be clearly identified on the curve. The field damage case was analyzed by both of the flow pressure and displacement methods. A comparison was made between the results of these two methods. It shows that both two
methods can reasonably capture the lateral pile response when subjected the flow pressure due to ground liquefaction. However, the flow pressure method seems more suitable to be used in the area of seismic performance-based design of pile foundation.
Although pushover analysis can capture the pile response very well, it is so complicated that the analyses usually have to be solved by numerical methods. Based on some reasonable assumptions, the thesis presents a simplified closed-form solution for the analysis. It is a combination of the solutions of an Euler’s beam and an elastic lateral pile. The solution is used to analyze two cases of damaged pile due to lateral spreading. The calculated result by the solution agrees the field performance well. Based on the simplified closed-form solution, the influences of pile diameter, pile spacing, peak ground acceleration, the SPT-N value of liquefying layer, and the SPT-N value of non-liquefying layer on the lateral pile responses are discussed in the thesis.
關鍵字(中) ★ 最佳化設計
★ 解析解
★ 性能設計
★ 側推分析
★ 最佳化演算法
★ 樁基礎
關鍵字(英) ★ piled foundation
★ performance-based design
★ optimum design
★ closed-form solution
★ algorithms
★ pushover analysis
論文目次 摘要
ABSTRACT
致謝
目錄 i
表目錄 vi
圖目錄 xii
第一章 緒論 1
1.1 研究動機與目的 1
1.2 研究內容與流程 3
1.3 論文架構 7
第二章 文獻回顧 9
2.1 基樁工程設計規範 9
2.1.1 傳統基樁設計方法 10
2.1.2 基樁耐震性能設計法 19
2.2 最佳化理論及其於大地工程之應用 22
2.3 最佳化理論於基樁工程之應用 28
2.4 離散最佳化演算法之回顧 34
2.4.1 竭盡搜尋法 37
2.4.2 離散拉格朗日法 38
2.4.3 相對差商法 40
2.4.4 遺傳演算法 41
2.4.5 混合式GA演算法 43
第三章 樁基礎設計分析公式與最佳化數學模型 45
3.1 樁基礎設計與分析模式 46
3.1.1 設計變數的選定 49
3.1.2 最小樁帽厚度 51
3.1.3 基樁承載力 59
3.1.4 群樁效應 61
3.1.5 液化折減 66
3.1.6 樁頭反力及樁帽變位量 69
3.1.7 配筋設計 75
3.2 目標函數 82
3.2.1 土方開挖費用 82
3.2.2 基樁費用 83
3.2.3 樁帽費用 84
3.2.4 夯實回填費用 85
3.3 束制條件 86
3.3.1 工址用地限制 86
3.3.2 基樁間距限制 86
3.3.3 基樁長度限制 87
3.3.4 樁帽剪力限制 87
3.3.5 基樁容許承載力 88
3.3.6 樁頭容許變位量 89
3.4 安全餘裕指標 90
3.5 初始解的選取原則 91
第四章 最佳化演算法 95
4.1 離散拉格朗日法 95
4.1.1 離散拉格朗日函數 97
4.1.2 鄰點定義 98
4.1.3 搜尋方向與收斂準則 99
4.1.4 一階搜尋公式 101
4.1.5 轉換函數 105
4.1.6 擴大鄰點搜尋 106
4.1.7 DLM的再搜尋機制 106
4.2 修正相對差商法 108
4.2.1 鄰點定義 110
4.2.2 差商計算 110
4.2.3 搜尋方向與收斂準則 111
4.2.4 擴大鄰點搜尋 113
4.2.5 MRDQA的再搜尋機制 114
4.3 實數編碼遺傳演算法 115
4.3.1 產生初始族群 115
4.3.2 適應函數與束制函數的處理 116
4.3.3 選擇及複製 120
4.3.4 交配 121
4.3.5 突變 123
4.3.6 挑選子代族群之個體 124
4.3.7 收斂準則 125
4.4 混合式GA演算法 127
4.4.1 HGA-DLM 129
4.4.2 HGA-MRDQA 130
第五章 以最佳化演算法求解樁基礎低價化解 131
5.1 案例選擇與說明 132
5.1.1 日本道路橋樁基礎設計案例 134
5.1.2 台灣東部河川橋樁基礎設計案例 137
5.1.3 台灣高鐵高架橋樁基礎設計案例1 140
5.1.4 台灣高鐵高架橋樁基礎設計案例2 143
5.1.5 台灣高鐵高架橋樁基礎設計案例3 145
5.1.6 台灣高鐵高架橋樁基礎設計案例4 147
5.1.7 台灣高鐵高架橋樁基礎設計案例5 149
5.2 試誤設計程序之檢討 151
5.2.1 JR案例探討 152
5.2.2 TE案例探討 156
5.2.3 THSR1案例探討 160
5.2.4 THSR2案例探討 164
5.2.5 THSR3案例探討 168
5.2.6 THSR4案例探討 172
5.2.7 THSR5案例探討 176
5.2.8 小結 180
5.3 離散拉格朗日法與修正相對差商法之搜尋性能 181
5.3.1 建議初始解的適用性 181
5.3.2 DLM及MRDQA之搜尋性能 184
5.4 實數編碼遺傳演算法之搜尋性能 192
5.4.1 RGA參數研究 192
5.4.2 RGA之搜尋性能 197
5.5 混合式GA演算法之搜尋性能 199
5.5.1 HGA參數研究 199
5.5.2 HGA之搜尋性能 202
5.6 各演算法搜尋性能之比較 205
5.7 參數研究 207
5.7.1 物料單價敏感度分析 208
5.7.2 液化折減、樁帽阻抗及群樁效應 210
第六章 基樁抗液化流動耐震性能設計與分析 215
6.1 液化流動壓作用下基樁耐震性能之側推分析 216
6.1.1 流動土壓分析模式 218
6.1.2 流動變位分析模式 224
6.2 現地基樁損害案例之分析 229
6.2.1 基樁損害案例概述 229
6.2.2 流動土壓分析模式之分析結果 234
6.2.3 流動變位分析模式之分析結果 241
6.2.4 兩種分析模式之比較 243
6.3 基樁抗液化流動之耐震性能設計法 245
6.4 液化流動壓作用下基樁之簡化解析解 250
6.4.1 簡化解析解之推求 250
6.4.2 簡化解析解合理性之檢核 260
6.4.3 參數研究 274
第七章 結論與建議 291
7.1 結論 291
7.2 建議 296
參考文獻 299
參考文獻 1. 中國土木水利工程學會,地錨設計與施工準則暨解說,科技圖書,台北 (1998)。
2. 中國土木水利工程學會,混凝土工程設計規範與解說,土木401 -93,科技圖書,台北 (2005)。
3. 內政部建築研究所,建築物基礎構造設計規範,營建雜誌社,台北 (2001)。
4. 內政部營建署,建築技術規則,營建雜誌社,台北 (2000)。
5. 日本土質工學會,基礎設計資料集,東京 (1992)。
6. 日本工業規格(JIS),プレキャストプレストレストコンクリート製品 (JIS-A5373),東京 (2004)。
7. 日本建築學會,建築基礎構造設計指針,東京 (2001)。
8. 日本道路協會,道路橋示方書‧同解說,Ⅳ下部構造編,東京 (1996)。
9. 日本道路協會,道路橋示方書‧同解說,Ⅳ下部構造編,東京 (2002)。
10. 日本道路協會,道路橋示方書‧同解說,Ⅴ耐震設計編,東京 (2002)。
11. 日本道路協會,道路橋耐震設計相關資料集,東京 (1997)。
12. 王建智、黃正祈、詹勳山,「高雄地區深開挖土壤參數之最佳化分析」,技術學刊,第十六卷,第四期,第641-649頁 (2001)。
13. 王韋舜,「基樁抗壓與抗拉極限承載力之差異」,碩士論文,國立中央大學土木工程研究所,中壢 (2005)。
14. 台灣營建研究院,營建物價,第三十九期,台北 (2004)。
15. 交通部,公路橋梁耐震設計規範,幼獅文化,台北 (2000)。
16. 交通部,公路橋梁設計規範,幼獅文化,台北 (2001)。
17. 向衍、蘇懷智、吳中如,「基於大壩安全監測資料的物理力學參數反演」,水利學報,第八期,第1-6頁 (2004)。
18. 余書維,「遺傳演算法則於群樁低價化設計之應用」,碩士論文,國立中央大學土木工程研究所,中壢 (2003)。
19. 吳興序,「橋樑樁基礎的電腦優化設計系統」,土木工程學報,第二十八卷,第六期,第67-72頁 (1995)。
20. 李亮、遲世春、林臬,「引入退火機制的複合形法在邊坡最小安全係數搜尋中的應用」,水利學報,第一期,第1-6頁 (2005)。
21. 中國建築科學研究院,建築樁基技術規範 (JGJ94-94),中國建築工業出版社,北京 (1995)。
22. 唐雨耕、歐章煜,「利用最佳化方法識別土壤彈性參數」,中國土木水利工程學刊,第十一卷,第二期,第221-229頁 (1999)。
23. 孫煥純、柴山、王躍方,離散變量結構優化設計,大連理工大學出版社 (1995)。
24. 徐文杰,「群樁基礎之最低價設計」,碩士論文,國立中央大學土木工程研究所,中壢 (2000)。
25. 茶古文雄,「建築設計におけるを杭の引拔き抵抗力機構の考え方」,基礎工,第二十二卷,第七期,第26-32頁 (1994)。
26. 張慰慈,「DLM-GA混合搜尋法於結構離散最佳化設計之應用」,碩士論文,國立中央大學土木工程研究所,中壢 (2003)。
27. 梅傳書、鐘登華,「基於模糊罰函數遺傳演算法的高層建築基礎優化設計研究」,水利與建築工程學報,第一卷,第四期,第5-8頁 (2003)。
28. 盛興旺、裘伯永,「空間樁基的拓撲優化」,長沙鐵道學院學報,第十三卷,第四期,第25-32頁 (1995)。
29. 莊德興、吳朗益,「離散拉格朗日法於群樁基礎低價化設計之應用」,中國土木水利工程學刊,第十五卷,第二期,第303-314頁 (2003)。
30. 莊德興、張慰慈,「離散拉格朗日法於大型桁架輕量化設計之加速搜尋策略」,中國土木水利工程學刊,第十七卷,第一期,第143-151頁 (2005)。
31. 許博傑、林其禹,「實數編碼與二位元編碼遺傳演算法之性能比較」,第二十五屆全國力學會議,台中市,第1677-1688頁 (2001)。
32. 陳明山、段紹緯、黃永和、謝添和,「高速鐵路橋梁樁基礎設計考量」,第十屆大地工程學術研究討論會,台北,第197-200頁 (2003)。
33. 陳明華,「永久性地錨於C-ψ土壤中最佳化之設計」,碩士論文,國立中央大學土木工程研究所,中壢 (2003)。
34. 陽吉寶、趙錫宏,「高層建築樁箱(筏)基礎的優化設計」,計算力學學報,第十四卷,第二期,第241-244頁 (1997)。
35. 黃俊鴻,「液化地盤中樁基礎之耐震設計」,地工技術,第八十二期,第65-78頁 (2000)。
36. 黃俊鴻,「路堤耐震分析與性能設計」,地工技術 (已接受)。
37. 黃俊鴻、鍾明劍,「液化流動壓作用下側向樁之簡化解析解」,中國土木水利工程學刊 (已接受)。
38. 楊克己、韓理安,樁基工程,人民交通出版社,北京,第13-77頁 (1997)。
39. 趙利俠、王國體,「樁箱筏優化設計的加速遺傳演算法」,中國煤田地質,第十七卷,第一期,第26-29頁 (2005)。
40. 劉金礪,「群樁橫向承載力的分項綜合效應係數計算法」,岩土工程學報,第十四卷,第三期,第9-19頁 (1992)。
41. 樁基工程手冊編寫委員會,樁基工程手冊,中國建築工業出版社 (1995)。
42. 歐晉德,「基樁負摩擦力」,地工技術雜誌,第十八期,第24-33頁 (1987)。
43. 冀樹勇、陳錦清、王建智,「RIDO程式之最佳化土壤參數之探討」,地工技術,第七十五期,第61-76頁 (1999)。
44. 盧俊愷、劉英偉、陳明吉,「以最佳化方法輔助混凝土重力壩斷面設計」,中國土木水利工程學刊,第十一卷,第四期,第667-676頁 (1999)。
45. 薛強,「耐震性能設計法之介紹」,中興工程,第八十期,第9-24頁 (2003)。
46. 鍾明劍、莊德興、黃俊鴻,「場鑄群樁基礎的低價化設計」,2005年電子計算機於土木水利工程應用研討會,台南,第401-407頁 (2005a)。
47. 鍾明劍、黃俊鴻,「設計變數對樁基礎工程造價之影響」,第十屆大地工程學術研究討論會,台北,第425-428頁 (2003)。
48. 鍾明劍、黃俊鴻、莊德興,「以相對差商法輔助群樁基礎低價化設計」,第十一屆大地工程學術研究討論會,台北,第A21-1 ~ A21-6頁 (2005b)。
49. 鍾明劍、黃俊鴻、莊德興,「群樁基礎設計模式與全域最佳解之應用」,結構工程,第二十一卷,第一期,第122-139頁 (2006)。
50. 藍志浩,「考慮動態反應束制之桁架離散最佳化設計」,碩士論文,國立中央大學土木工程研究所,中壢 (2005)。
51. 鐵道綜合技術研究所,鐵道構造物等設計標準‧同解說-耐震設計,丸善株式會社,東京 (1999)。
52. 鐵道綜合技術研究所,鐵道構造物等設計標準‧同解說,丸善株式會社,東京 (1998)。
53. Abdoun, T., and Dobry, R., “Evaluation of pile foundation response to lateral spreading,” Soil Dynamics and Earthquake Engineering, Vol. 22, No. 9, pp. 1051-1058 (2002).
54. Abdoun, T., Dobry, R., O’Rourke, T.D., and Goh, S.H., “Pile response to lateral spreads: centrifuge modeling,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 129, No. 10, pp. 869-878 (2003).
55. Adachi, N., Miyamoto, Y., and Koyamada, K., “Shaking table test and lateral loading test for pile foundation in saturated sand,” Proceeding of Centrifuge 98, Balkema, Rotterdam, pp. 289-294 (1998).
56. American Concrete Institute (ACI), “Building code requirement for reinforced concrete, with design applications,” ACI 318-89, Detroit, Mich. (1990).
57. Arora, J.S., Huang, M.W., and Hsieh, C.C., “Methods for optimization of nonlinear problems with discrete variables: A review,” Structural and Multidisciplinary Optimization, Vol. 8, No. 2-3, pp. 69-85 (1994).
58. Arora, J.S., Introduction to Optimum Design, McGraw-Hill, New York (1989).
59. Ashour, M., and Norris, G., “Lateral loaded pile response in liquefiable soil,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 129, No. 6, pp. 404-414 (2003).
60. ATC-40, “Seismic evaluation and retrofit of concrete buildings,” Proposition 122 Seismic Retrofit Practices improvement Program Report SSC 96-01, California Seismic Safety Commission, U.S.A. (1996).
61. Back, T., Hoffmeister, F., and Schwefel, H.P., “A survey of evolution strategies,” Proceeding of the Fourth International Conference on Genetic Algorithms, San Mateo, CA: Morgan Kaufmann, pp. 2-9 (1991).
62. Baskar, S., Subbaraj, P., and Rao, M.V.C., “Performance of hybrid real coded genetic algorithm,” International Journal of Computational Engineering Science, Vol. 2, No. 4, pp. 583-601 (2001).
63. Berrill, J., and Yasuda, S., “Liquefaction and piled foundations: some issues,” Journal of Earthquake Engineering, Vol.6, Special Issue 1, pp. 1-41 (2002).
64. Bolin, H.W., “The pile efficiency formula of the Uniform Building Code,” Building Standards Monthly, Vol. 10, No. 1, pp. 4-5 (1941).
65. Canadian Geotechnical Society, Canadian Foundation Engineering Manual, c/o Bitech Publishers, Vancouver (1985).
66. Ceranic, B., Fryer, C., and Baines, R.W., “An application of simulated annealing to the optimum design of reinforced concrete retaining structures,” Computers and Structures, No.79, pp. 1559-1581 (2001).
67. Chai, S., and Sun, H.C., “A relative difference quotient algorithm for discrete optimization,” Structural Optimization, Vol. 12, No. 1, pp. 46-56 (1996).
68. Chang, Y.L., “Discussion on lateral pile-loading tests,” by L. B. Feagin, Transactions, ASCE, Vol. 102, pp. 272-278 (1937).
69. Chow, Y.K., and Thevendran, V., “Optimization of pile groups,” Computers and Geotechnics, Vol. 4, pp. 43-58 (1987).
70. Coello, C.A., Christiansen, A.D., and Hernandez, F.S., “A simple genetic algorithm for the design of reinforced concrete beams,” Engineering with Computers, Vol. 13, No. 4, pp. 185-196 (1996).
71. Coello, C.A., Rudnick, M., and Christiansen, A.D., “Using genetic algorithms for optimal design of trusses,” Proceeding International Conference on Tools with Artificial Intelligence, IEEE, pp. 88-94 (1994).
72. Coello, C.A., “Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: A Survey of the state of the art,” Computer Methods in Applied Mechanics and Engineering, Vol. 191, No. 12, pp. 1245-1287 (2002).
73. Cubrinovski, M., and Ishihara, K., “Simplified method for analysis of piles undergoing lateral spreading in liquefied soils,” Soils and Foundations, Vol. 44, No. 5, pp. 119-133 (2004).
74. Dantzig, G.B., Linear Programming and Extensions, Princeton, NJ: Princeton University Press (1963).
75. Das, B.M., Principles of Foundation Engineering, Brooks/Cole Publishing Company, Pacific Grove, California (1998).
76. Davis, L., Handbook of Genetic Algorithms, Van Nostrand Reinhold, New York (1991).
77. De Jong, K.A., “An analysis of the behavior of a class of genetic adaptive systems,” Ph.D. Dissertation, University of Michigan (1975).
78. Dobry, R., Abdoun, T., O’Rourke, T.D., and Goh, S. H., “Single piles in lateral spreads: field bending moment evaluation,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 129, No. 10, pp. 879-889 (2003).
79. Eshelman, L.J., and Schaffer, J.D., “Real-coded genetic algorithms and internal-schemata,” Foundations of Genetic Algorithms 2, San Mateo, CA: Morgan Kaufmann, pp. 187-202 (1993).
80. Fawaz, Z., Xu, Y.G., and Behdinan, K., “Hybrid evolutionary algorithm and application to structural optimization,” Structural and Multidisciplinary Optimization, Vol.30, No. 3, pp. 219-226 (2005).
81. Federation Internationale de la Precontrainte (FIP), “Corrosion and Corrosion Protection of Prestressed Ground Anchorages,” FIP-State of the Art Report, Tomas Telford Ltd. (1986).
82. FEMA-274, “NEHRP guidelines for the seismic rehabilitation of buildings,” Federal Emergency Management Agency Report, U.S.A. (1997).
83. Finn, W.D.L., and Fujita, N., “Piles in liquefiable soils: seismic analysis and design issues,” Soil Dynamics and Earthquake Engineering, Vol. 22, No. 9, pp. 731-742 (2002).
84. Gen, M., and Cheng, R., Genetic Algorithms and Engineering Design, John Wiley & Sons, New York (1997).
85. Goldberg, D.E., and Deb, K., “A comparative analysis of selection schemes used in genetic algorithms,” Foundations of Genetic Algorithms 1, San Mateo, CA: Morgan Kaufmann, pp. 69-93 (1991).
86. Goldberg, D.E., and Samtani, M.P., “Engineering optimization via genetic algorithm,” Proceeding of 9th Conference Electronic Computation, ASCE, pp. 471-482 (1986).
87. Goldberg, D.E., Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, Massachusetts (1989).
88. Hanna, A.M., Morcous, G., and Helmy, M., “Efficiency of pile groups installed in cohesionless soil using artificial neural networks,” Canadian Geotechnical Journal, Vol.41, No.6, pp. 1241-1249 (2004).
89. Himmelblau, D.M., Applied Nonlinear Programming, McGraw-Hill, New York (1972).
90. Hoback, A.S., and Truman, K.Z., “Least weight design of steel pile foundations,” Engineering Structures, Vol. 15, No. 5, pp. 379-385 (1993).
91. Holland, J.H., “Outline for a logical theory of adaptive system,” Journal of the Association for Computing Machinery, Vol. 3, pp. 297-314 (1962).
92. Homaifar, A., Lai, S.H.Y., and Qi, X., “Constrained optimization via genetic algorithms,” Simulation, Vol. 62, No. 4, pp. 242-254 (1994).
93. Horikoshi, K., “Optimum design of piled raft foundations,” Ph.D. Dissertation, Department of Civil Engineering, University of Western Australia, Perth, Australia (1995).
94. Horikoshi, K., Tateishi, A., and Tadafumi, F., “Centrifuge modeling of a single pile subjected to liquefaction-induced lateral spreading,” Soils and Foundations, Vol. 38, No. 2, pp. 193-208 (1998).
95. Hwang, J.H., and Chung M.C., “A simplified closed form solution for pile subjected to liquefaction-induced flow pressure,” Eighth U.S. National Conference on Earthquake Engineering, San Francisco, California (2006).
96. Ishihara, K., and Cubrinovski, M., “Case studies on pile foundations undergoing lateral spreading in liquefied deposits,” Proceeding of 5th International Conference on Case Histories in Geotechnical Engineering, New York, Paper SOAP 5 (2004).
97. Juang, D.S., Wu, Y.T., and Chang, W.T., “Optimum design of truss structures using discrete Lagrangian method,” Journal of the Chinese Institute of Engineers, Vol. 26, No. 5, pp. 635-646 (2003).
98. Kim, H.T., Yoo, H.K., and Kang, I.K., “Genetic algorithm-based optimum design of piled raft foundations with model tests,” Geotechnical Engineering, Vol. 33, No. 1, pp. 1-11 (2002).
99. Kim, K.N., Lee, S.H., Kim, K.S., Chung, C.K., Kim, M.M., and Lee, H.S., “Optimal pile arrangement for minimizing differential settlements in piled raft foundations,” Computers and Geotechnics, Vol. 28, pp. 235-253 (2001).
100. Lin, S.S., Chiang, C.C., Lee, W.F., and Chen, C.H., “Pile damage caused by lateral spread - analytical model and case studies,” 2004 Taiwan-Japan Joint Workshop on Geotechnical Hazards from Large Earthquakes and Heavy Rainfall Tentative Proceeding, Taipei (2004).
101. Michalewicz, Z., and Fogel, D.B., How to Solve It: Modern Heuristics, Springer-Verlag, New York (2000).
102. Michalewicz, Z., and Schoenauer, M., “Evolutionary algorithms for constrained parameter optimization problems,” Evolutionary Computation, Vol. 4, No. 1, pp. 1-32 (1996).
103. Michalewicz, Z., “Genetic algorithms, numerical optimization and constraints,” Proceeding of the 6th International Conference on Genetic Algorithms, San Mateo, CA: Morgan Kaufmann, pp. 151-158 (1995).
104. Michalewicz, Z., Genetic Algorithms + Data Structures = Evolution Programs, Springer-Verlag, New York (1992).
105. Muhlenbein, H., and Schlierkamp, V.D., “Predictive models for the breeder genetic algorithm:Ⅰ. Continuous parameter optimization,” Evolutionary Computation 1, pp. 25-49 (1993).
106. Ng, J.T.M., Chan, C.M., and Zhang, L.M., “Optimum design of pile groups in nonlinear soil using genetic algorithms,” Proceedings of the 8th International Conference on the Application of Artificial Intelligence to Civil, Rome, Italy (2005).
107. Olsen, G., and Vanderplaats, G.N., “A method for nonlinear optimization with discrete variables,” AIAA Journal, Vol. 27, No. 11, pp. 1584-1589 (1989).
108. Poulos, H.G., and Davis, E., Pile Foundation Analysis and Designs. Wiley, New York (1980).
109. Rajeev, S., and Krishnamoorthy, C.S., “Discrete optimization of structures using genetic algorithms,” Journal of Structural Engineering, ASCE, Vol. 118, No. 5, pp. 1233-1250 (1992).
110. Randolph, M.F., Dolwin, J., and Beck, R., “Design of driven piles in sand,” Geotechnique, Vol. 44, No. 3, pp. 427-448 (1994).
111. Randolph, M.F., and Worth, C.P., “Analysis of deformation of vertically loaded pile groups,” Geotechnique, Vol. 29, No. 4, pp. 423-439 (1979).
112. Reklaitis, G.V., Ravindran, A., and Ragsdell, K.M., Engineering Optimization Methods and Applications, John Wiley and Sons, New York (1983).
113. Sandgren, E., “Nonlinear integer and discrete programming in mechanical design optimization,” Journal of Mechanical Design, ASME, Vol. 112, No. 2, pp. 223-229 (1990).
114. Sarbas, A., and Erbatur, F., “Optimization and sensitivity of retaining structures,” Journal of Geotechnical Engineering, Vol. 122, No. 8, pp. 649-656 (1996).
115. Sayed, S.M., and Bakeer, R.M., “Efficiency formula for pile groups,” Journal of Geotechnical Engineering, ASCE, Vol. 118, No. 2, pp. 278-299 (1992).
116. SEAOC, “Performance Based Seismic Engineering Guidelines,” SEAOC Seismology PBE Adhoc Committee (1998).
117. Seiler, J.F., and Keeney, W.D., “The efficiency of piles in groups,” Wood Preserving News, Vol. 22, No. 11, pp. 109-118 (1944).
118. Taiwan High Speed Rail Corporation (THSRC), Volume9, Design Specifications, Taipei, (2000).
119. Tamura, K., Ninomiya, Y., and Hamada, T., “Estimation of effects of liquefaction-induced ground flow on bridge foundations,” 28th Joint Meeting, US-Japan Panel on Wind and Seismic Effects, UJNR, pp. 72-79 (1996).
120. Thanedar, P.B., and Vanderplaats, G.N., “Survey of discrete variable optimization for structural design,” Journal of Structural Engineering, ASCE, Vol. 121, No. 2, pp. 301-306 (1995).
121. Timoshenko, S., Strength of Materials, Van Nostrand, Princeton, pp. 402 (1955).
122. Tokimatsu, K., and Asaka, Y., “Effects of liquefaction-induced ground displacement on pile performance in the 1995 Hyogoken - Nambu Earthquake,” Soils and Foundations, Vol. 38, No.2, pp. 163-178 (1998).
123. Tokimatsu, K., “Behavior and Design of Pile Foundations Subjected to Earthquakes,” 12th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, Keynote speech (2003).
124. Ton, W.H., and Liu, G.R., “An optimization procedure for truss structures with discrete design variables and dynamic constraints,” Computers and Structures, No.79, pp. 155-162 (2001).
125. Vanderplaats, G.N., “A program for automated design synthesis,” ADS, Version 1.10 (1985).
126. Valliappan, S., Tandjiria, V., and Khalili, N., “Design of raft-pile foundation using combined optimization and finite element approach,” International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 23, pp. 1043-1065 (1999).
127. Vesic, A.S., “Design of Pile foundation,” Transportation Research Board, National Cooperative Highway Research Program, Washington D.C., Synthesis of Highway Practice No. 42 (1977).
128. Wah, B.W., and Shang, Y., “A discrete Lagrangian-based global search method for solving satisfiability problems,” Proceedings of DIMACS Workshop on Satisfiability Problems, Theory and Applications, AMS (1996).
129. Whitley, D., “The genitor algorithm and selection pressure: Why rank-based allocation of reproductive trials is best,” Proceeding of the 3rd International Conference on Genetic Algorithms, San Mateo, California, pp. 116-121 (1989).
130. Wright, A.H., “Genetic algorithm for real parameter optimization,” Foundations of Genetic Algorithms 1, San Mateo, CA: Morgan Kaufmann, pp. 205-218 (1991).
131. Wu, Z., “The discrete Lagrangian theory and its application to solve nonlinear discrete constrain optimization problems,” Master Thesis, Department of Computer Science, University of Illinois at Urbana-Champaign (1998).
132. Yeh, I.C., “Hybrid genetic algorithms for optimization of truss structures,” Computer-Aided Civil and Infrastructure Engineering, Vol. 14, No. 3, pp. 199-206 (1999).
指導教授 黃俊鴻、莊德興
(Jin-Hung Hwang、Der-Shin Junag)
審核日期 2006-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明