博碩士論文 945403003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:18.226.187.60
姓名 廖建興(Chien-Hsing Liao)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 基於同步考量抗干擾及低探究機率能力之感知通訊系統研究
(Investigation of Cognitive Communication System Based on Concurrent AJ and LPE Capabilities)
相關論文
★ 手機用之平面倒F天線設計★ 跳頻通訊干擾系統之干擾效能模擬與研析
★ 無線電交叉定位法運用於多目標之研究★ WCDMA及DVB-T之整合天線設計
★ WCDMA射頻前端設計★ 寬頻衛星通訊系統在展頻技術運用之鏈路分析研究
★ 運用SIFT特徵進行光學影像目標識別★ 多來源遙測影像融合與色差校正之研究
★ 語音關鍵詞辨識擷取系統★ 適用於筆記型電腦之WiMAX天線研究
★ 應用於凱氏天線X頻段之低雜訊放大器設計★ 適用於802.11a/b/g WLAN USB dongle曲折型單極天線設計改良
★ 應用於行動裝置上的雙頻(GPS/BT)天線★ SDH設備單體潛伏性障礙效能分析與維運技術
★ 無風扇嵌入式觸控液晶平板系統小型化之設計★ 自動化RFID海關通關系統設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文內容主要探討三個密切相關之主題:對展頻通訊系統之同時多重干擾器/截收器評估、有效之跟隨式干擾機率模型研究,及其於感知無線電通訊之調適運用等。然於步入主題之前,將先進行與本論文研究相關之內容探討,如研究動機、目的、先前相關論文及工作回溯,以及許多與本論文論述相關之基本技術背景基礎,如TRANSEC傳輸安全性概念、展頻技術基礎、傳輸效應模型、天線場型模型,及供分析模擬之想定等;此外,有關DS直接序列及FH跳頻信號之干擾反制及其之涵蓋、偵測、截收,及探究反制等亦進行探討之。三項研究主題敘述如下:
第一個主題係經由可用之方法及衡量指標,提供同時之單一及多重之干擾器/截收器之AJ抗干擾及LPD/I/E低偵測/截收/探究率之評估。吾人發展出一系統化方法,藉由歸整許多與系統相關或幾何位置相關之參數,用以評估一俱同時AJ抗干擾及LPD/I/E低偵測/截收/探究率能力之安全通訊系統性能。吾人基於所提之運用想定,並特針對一典型FHMA跳頻多工及BFSK二元頻率位移鍵入調變方式,探討對於單一及多重之同時干擾器/截收器之安全性之評估及擇優。第二研究主題係以兩種不同之幾何觀察模型及平均式及循序式之兩種掃描方法,分析此有趣之跟隨式干擾模型,用以發展評估此種跟隨式干擾之有效跟隨機率。針對一俱及時掃描(偵測)及傳輸(干擾)之跟隨式干擾進行研究,藉由估算此有效干擾(追隨)機率(h)數值,以驗證其傳輸安全性之FH跳頻展頻性能。第三項主題係有關以”合作式”之CRU感知單元取代先前所提之共位置干擾器/截收器之CR感知無線電調適運用,其係一經由CPR感知機率比以評估即時通訊資源之有效及嶄新模型。基本之DF測向及EL定位技術亦可整合進入吾人所提之感知無線電單元模型,以提供更精確之傳輸延遲預估及時間估算。所提之CRU模型及CPR感知比等對感知無線電網路而言係創新之研究貢獻。
摘要(英) In this thesis, we emphasize on three main topics of concurrent multiple jammer/interceptors evaluations for spread spectrum communication systems, investigations of effective FOJ probability model, and its adaptation to cognitive radio communications, which seem to be different but, in fact, closely related. Before stepping into these main topics, the research motivation, purpose, and previous work survey will be stated first, then some fundamental backgrounds for this thesis, e.g., TRANSEC concept, spread spectrum fundamentals, basic propagation effects model, antenna patterns model, adopted scenarios for analysis and simulations, and etc. will be followed. Hereafter, two countermeasures issues will be examined, which include the countermeasures to jam both DS and FH communication signals and the countermeasures to cover, detect, intercept, or even exploit both DS and FH signals. The three main topics are stated as follows.
The first main topic is the AJ and LPD/I/E evaluations for concurrent single and multiple jammer/interceptors via schemes and metrics available. We develop a systematic method for evaluation of a secure communication system with simultaneous AJ and LPD/I/E capabilities by coordinating with many system-dependent and geometric-dependent parameters. For a typical communications system with FHMA and BFSK modulation, single and multiple concurrent jammer/interceptors are examined based on the proposed operation scenarios for security evaluations and trade-offs.
The second main topic is the analysis of an interesting FOJ model with two different geometric observation models with elliptic and hyperbolic contours, respectively, and both uniform and sequential scanning schemes, to develop an approach for evaluating the FOJ effective probability. A FOJ model with both real-time scanning (detection) and transmission (jamming) capabilities is examined to verify the FH spread spectrum performance of transmission security by estimating effective jamming probability (h).
The last main topic is the adaptation to cognitive radio communication by replacing the collocated jammers/interceptors with “cooperative” cognitive radio units (CRUs), which would be an effective and novel model for evaluating the real time communication resources through cognitive probability ratio (CPR). Fundamental direction finding (DF) and emitter location (EL) techniques are incorporated with proposed cognitive radio unit (CRU) and models for more accurate propagation delay prediction and estimation. The proposed CRU model and CPR is innovative for cognitive radio network evaluations.
關鍵字(中) ★ 感知通訊
★ 低探究機率
★ 同步
★ 抗干擾
關鍵字(英) ★ cognitive radio
★ low probability of exploitation
★ anti-jamming
★ Concurrent
論文目次 中文摘要 i
Abstract iii
Acknowledgements v
Table of Contents vii
List of Figures xi
List of Tables xvii
Abbreviations xviii
Chapter 1 Introduction 1
1.1 PROBLEM STATEMENTS 1
1.2 SURVEY OF PREVIOUS WORK 3
1.3 PURPOSE OF RESEARCH 7
1.4 ORGANIZATION OF DISSERTATION 10
1.5 CONTRIBUTIONS 12
Chapter 2 General Background 14
2.1 TRANSMISSION SECURITY 14
2.2 SPREAD SPECTRUM COMMUNICATIONS 18
2.2.1 Direct Sequence (DS) 19
2.2.2 Frequency Hopping (FH) 23
2.2.3 Time Hopping (TH) 26
2.2.4 Hybrid 27
2.3 PROPAGATION EFFECTS 29
2.4 ANTENNA PATTERN 32
2.5 SCENARIOS 34
2.6 SUMMARY 36
Chapter 3 Jamming and Interception 37
3.1 COUNTERMEASURES TO AJ AND LPD/I/E 37
3.2 JAMMING MODELS 38
3.2.1 Jamming Measures 39
3.2.2 Noncorrelated Jamming 39
3.2.2.1 Partial Band and Broadband Jamming 40
3.2.2.2 Multi-tone Jamming 41
3.2.2.3 Pulsed Jamming 42
3.2.2.4 Sweep jamming 42
3.2.3 Correlated Jamming 43
3.3 INTERCEPTION MODELS 44
3.3.1 Interception Measures 44
3.3.2 Linear Radiometer 45
3.3.2.1 Conventional Swept Receiver 46
3.3.2.2 Channelizer Receiver 47
3.3.2.3 Compressive Swept Receiver 48
3.3.3 Nonlinear Radiometer 49
3.3.3.1 Wideband Radiometric Receiver 49
3.3.3.2 Frequency Multiplier Receiver 50
3.3.3.3 Autocorrelation Receiver 51
3.3.3.4 Cross correlation Receiver 52
3.4 JAMMING PERFORMANCE ANALYSIS 52
3.4.1 PBJ and BBJ Noise Jamming 52
3.4.2 Multi-tone Jamming 55
3.4.3 Pulsed Jamming 57
3.4.4 Follow-on Jamming 59
3.5 INTERCEPTION PERFORMANCE ANALYSIS 63
3.5.1 Detection 64
3.5.2 Interception 68
3.5.3 Exploitation 69
3.6 EMITTER LOCATION 72
3.6.1 Emitter location fundamental 72
3.6.2 Two-site triangulation 74
3.6.3 Multi-site triangulation 77
3.7 SUMMARY 81
Chapter 4 Secure Concurrent AJ and LPE Communications 83
4.1 AJ AND LPE TRADEOFF 84
4.1.1 Model 85
4.1.1.1 Antenna patterns and tracking Errors 87
4.1.1.2 Power Control Issues 88
4.1.1.3 Jamming-to-Signal Ratio Contours 90
4.1.1.4 Interception-to-Noise Ratio Contours 90
4.1.1.5 Combined AJ and LPE Communications 91
4.1.2 Trade-off Results 94
4.2 CONCURRENT MULTIPLE JAMMER/INTERCEPTORS 102
4.2.1 Model 104
4.2.1.1 Multiple Jammers 107
4.2.1.2 Multiple Interceptors 108
4.2.1.3 Multiple Concurrent Jammer/Interceptors 110
4.2.2 Evaluation Method 113
4.2.3 Numerical Analysis 114
4.3 SUMMARY 123
Chapter 5 Performance Analysis of FH Follow-on Jamming 125
5.1 MODEL FOR FH JAMMING PROBABILITY 126
5.1.1 Uniform Scanning with Instant Response 132
5.1.2 Uniform Scanning with Delay Response 133
5.1.3 Sequential Scanning with Instant Response 135
5.1.4 Sequential Scanning with Delay Response 137
5.2 GEOMETRIC MODELS FOR FH JAMMING 139
5.2.1 Elliptical FH Jamming Model 139
5.2.2 Hyperbolic FH Jamming Model 141
5.3 NUMERICAL ANALYSIS 144
5.3.1 Uniform Scanning 144
5.3.2 Sequential Scanning 147
5.3.3 Uniform and Sequential Comparisons 150
5.3.4 Contours of Hyperbolic and Elliptic Trajectories 152
5.4 SUMMARY 155
Chapter 6 Adaptation toward Cognitive Communication 156
6.1 COGNITIVE RADIO FUNDAMENTALS 157
6.1.1 Next generation cognitive radio networks 158
6.1.2 Cognitive main characteristics 159
6.1.2.1 Cognitive capability: 160
6.1.2.2 Cognitive reconfigurability: 160
6.1.3 Spectrum sensing 162
6.1.4 Spectrum sensing challenges 163
6.2 FH COGNITIVE RADIO COMMUNICATION 165
6.2.1 FH Cognitive Radio Unit (CRU) architecture 165
6.2.3 Formulation 166
6.2.2 Observation scenario 169
6.3 NUMERICAL ANALYSIS 170
6.3.1 Contours by Using Uniform (U) Scanning 170
6.3.2 Contours by Using Sequential (S) Scanning 173
6.3.3 Contour Comparison by Using U and S scanning 176
6.3.4 Elliptic TSR and CPR 177
6.4 SUMMARY 182
Chapter 7 Conclusions 183
7.1 SUMMARY 183
7.2 FUTURE WORKS 185
References 186
Appendix A 193
Appendix B 194
Appendix C 195
Appendix D 197
Appendix E 199
Publication List 201
參考文獻 [1] R. C. Dixon, Spread Spectrum Systems, John Wiley & Sons, 1976.
[2] D. J. Torrieri, Principles of Military Communication Systems, Artech House, 1981.
[3] R. H. Pettit, ECM and ECCM Techniques for Digital Communication Systems, Lifetime Learning Publications, 1982.
[4] J. K. Holmes, Coherent Spread Spectrum Systems, John Wiley & Sons, 1982.
[5] D. J. Torreieri, Principles of Secure Communication Systems, Artech House, 1985.
[6] D. L. Nicholson, Spread Spectrum Signal Design-LPE & AJ systems, Computer science Press, 1987.
[7] R. E. Ziemer and R. L. Peterson, Digital Communications and Spread Spectrum Systems, Macmillan Publishing, 1985.
[8] T. T. Ha, Digital Satellite Communications, 2nd Ed., McGraw-Hill, pp. 539-584, 1990.
[9] M. K. Simon, J. K. Omura, R. A. Scholtz, and B. K. Levit, Spread Spectrum Communications Handbook, McGraw-Hill, rev. Ed, 1994.
[10] K. Fether, Wireless Digital Communications, Prentice-Hall, 2nd Ed, 1995.
[11] J. D. Gibson, The Mobile Communications Handbook, IEEE Press, 1996.
[12] S. Haykin, Communication Systems, John Wiley & Sons, 4th Ed., 2000.
[13] B. Sklar, Digital Communications, Prentice-Hall, 2nd Ed, 2001.
[14] J. G. Proakis, Digital Communications, McGraw-Hill, 4th Ed, 2001.
[15] T. S. Rappaport, Wireless Communications, Prentice-Hall, 2nd Ed, 2002.
[16] J. Schiller, Mobile Communications, Addison-Wesley, 2nd Ed, 2003.
[17] S. W. Houston, “Modulation Techniques for Communication, Part I: Tone and Noise Jamming Performance of Spread Spectrum M~ary FSK and 2, 4~ary DPSK Waveforms,” Proc. of the IEEE National Aerospace and Electronics Conference (NAECON’75), pp. 51-58, 10-12 June 1975.
[18] L. A. Gerbardt and R. C. Dixon, eds., “Special Issue on Spread Spectrum Communications,” IEEE Trans. Commun., vol. 25, Aug. 1977.
[19] R. A. Scholtz, “The spread spectrum concept,” IEEE Trans. Commun., vol. 25, pp. 748-755, Aug. 1977.
[20] A. J. Viterbi, “Spread spectrum Communications-Myths and Realities,” IEEE Commun. Mag., vol. 17, pp. 11-18, May 1979.
[21] P. W. Baier and M. Pandit, “Spread Spectrum Communication Systems,” Advances in Electronics and Electron Physics, vol. 53, pp. 209-267. Sept. 1980.
[22] Milstein, L. B., Pickholtz, R. L., and Schilling, D. L., “Optimization of the Processing Gain of an FSK-FH system,” IEEE Trans. Commun., vol. 28, pp. 1062-1079, July 1980.
[23] M. K. Simon and A. Polydoros, “Coherent Detection of Frequency-Hopped Quadrature Modulations in the Presence of Jamming: Part I: QPSK and QASK,” IEEE Trans. Commun., vol. 29, pp. 1644-1660, Nov. 1981.
[24] M. K. Simon and A. Polydoros, “Coherent Detection of Frequency-Hopped Quadrature Modulations in the Presence of Jamming--Part II: QPR Class I Modulation,” IEEE Trans. Commun., vol. 29, pp. 1661-1668, Nov. 1981.
[25] C. E. Cook, F. W. Ellersick, L. B. Milstein, and D. L. Schilling, eds., “Special Issues on Spread Spectrum Communications,” IEEE Trans. Commun., vol. 30, May 1982.
[26] R. A. Scholtz, “The Origins of Spread-Spectrum Communications,” IEEE Trans. on Commu., vol. 30, no. 5, pp. 822-854, May 1982.
[27] R. L. Pickholtz, D. L. Schilling, and L. B. Milsteio, “Theory of Spread-Spectrum Communications-A Tutorial”, IEEE Trans Commun., vol. 30, no. 5, pp. 855-884, May 1982.
[28] L. B. Milstein, S. Davidovici, and D. L. Schilling, “The Effect of Multiple-Tone Interfering Signals on a Direct Sequence Spread Spectrum Communications System,” IEEE Trans. on Commu., vol. 30, no. 3, pp. 436-446, Mar. 1982.
[29] L. B. Milstein and D.L. Schilling, “Performance of a Spread Spectrum Communication System Operating Over a Frequency-Selected Channel in the Presence of Tone Interference.” IEEE Trans. on Commu., vol. 30, pp. 240-247, Jan. 1982.
[30] M. Spellman, “A Comparison between Frequency Hopping and Direct Sequence Techniques,” IEEE Commun. Mag., vol. 21, pp. 26-33, July 1983.
[31] D. Gaston, “Applications of Spread Spectrum Radio Technology for the Security Market,” Proc. Institute of Electrical and Electronics Engineers 28th Annual 1994 International Carnahan Conference on Security Technology, pp. 86 - 91, 12-14 Oct. 1994.
[32] L. Turner, “The Evolution of Featureless Waveforms for LPI Communications”, Aerospace and Electronic Conference, NAECON 1991, vol. 3, pp. 1325-1331, 1991.
[33] A. B. Glenn, “Low Probability of Intercept”, IEEE Commu. Mag., vol. 21, pp. 26-33, 1983.
[34] L. L. Gutman and G. E. Prescott, “System Quality Factors for LPI Communications”, IEEE AES Mag., vol. 4, pp. 25-28, Dec. 1989.
[35] G. M. Dillard and R. A. Dillard, “A Metric for Defining Low Probability of Detection Based on Gain Differences”, IEEE Thirty-Fifth Asilomar Conference on Signals, Systems and Computers, vol. 2, pp. 1098-1102, Nov. 2001.
[36] G. D. Weeks, J. K. Townsend, and J. A. Freebersyser, “A Method and Metric for Quantitative defining Low Probability of Detection”, IEEE Military Communications Conference, vol.3, pp.821-826, 1998.
[37] R. F. Mills and G. E. Prescott, “Waveform Design and Analysis of Frequency Hopping LPI Networks”, IEEE Military Communications Conference, vol. 2, pp. 778-782, Nov. 1995.
[38] R. F. Mills and G. E. Prescott, “Detectability Models for Multiple Access Low Probability of Intercept Networks”, IEEE Trans. AES, vol. 36, no. 3, pp. 848-858, July 2000.
[39] J. Binia, “LPI Communication in Channels with Absorption Loss”, IEEE Military Communications Conference, vol. 1, pp. 394-397, 2004.
[40] P. H. Wu, “On Sensitivity Analysis of Low Probability of Intercept (LPI) Capability”, IEEE Military Communications Conference, vol. 3, pp. 821-826, 2005.
[41] R. Schoolcraft, “Low Probability of Detection Communications- Waveform Design and Detection Techniques-”, IEEE Military Communications Conference, vol. 2, pp. 832-840, Nov. 1991.
[42] P. H. Wu, “Optimal Interceptor for Frequency-Hopped DPSK Waveform”, IEEE Military Communications Conference, vol. 5, pp. 2896-2906, 2006.
[43] K. Burda, “The Performance of The Follower Jammer with a Wideband Scanning Receiver”, Journal of Electrical Engineering, vol. 55, no. 1-2, pp. 36-38, 2004.
[44] F. B. Gross and K. Chen, “Comparison of Detectability of Traditional Pulsed and Spread Spectrum Radar Waveforms in Classic Passive Receivers”, IEEE Trans. AES, vol.41, no. 2, pp.746-751, April 2005.
[45] J. Yu and Y. D. Yao, “Detection Performance of Chaotic Spreading LPI Waveforms”, IEEE Trans. Wireless Commun., vol.4, no.2, pp.390-396, March 2005.
[46] S. Haykin, “Cognitive Radio: Brain-Empowered Wireless Communications”, IEEE Journal on selected Areas in Comm., vol. 23, no. 2, pp. 201-220, Feb. 2005.
[47] A. J. Petrin, P. M. Markus, J. R. Pfeiffenberger, and R. Palkkki, “Cognitive Radio Testbed and LPI, LPD Waveforms”, IEEE Military Communications Conference, pp. 1-2, 2006.
[48] M. E. Sahin and H. Arslan, “System Design for Cognitive Radio Communications”, 1st International Conference on Cognitive Radio Oriented Wireless Networks and Communications, pp. 1-5, 2006.
[49] S. Srinivasa and S. A Ja, “The Throughput Potential of Cognitive Radio: A Theoretical Perspective,” IEEE Commu. Mag., pp. 73-79, May 2007.
[50] F. K. Jondral and U. Karlsruhe, “Cognitive Radio: A Communications Engineering View,” IEEE Wireless Communications, pp. 28-33, Aug. 2007.
[51] E. Fthenakis., Manual of Satellite Communications, McGraw-Hill, 1984.
[52] L. V. Blake, Radar Range-Performance analysis, pp. 1-24, 244-258, Artech House, 1986.
[53] J. V. Difranco and W. L. Rubin, Radar Detection, pp. 315, 446-468, Artech House, 1980.
[54] M. Skolnik, ed., Radar Handbook, pp. 15-19, 223-244, McGraw-Hill, 1970.
[55] William C. Y. Lee, Mobile Communications design Fundamentals, pp. 58-60, John Wiely & Sons, 2nd Ed, 1993.
[56] P. C. Jain, “Architectural Trends in Military Satellite Communications Systems”, Proc. of the IEEE, vol. 78, no. 4, July 1990.
[57] M. B. Pursley, “Performance Evaluation for Phase-Coded spread-Spectrum Multiple-Access Communication-Part I: System Analysis,” IEEE Trans. Commu., vol. 25, no.8, pp.795-799, Aug. 1977.
[58] D. P. Hayes and T. T. Ha, “A Performance Analysis of DS-CDMA and SCPC VSAT Networks,” IEEE Trans. AES, vol.26, no.1, pp.12-21, Jan. 1990.
[59] W. Lam, “Theory and Applications of Spread-Spectrum Systems-A Self-Study Course,” May 1994.
[60] D.S. Hill, “Multiple signal DF using superresolution: a practical assessment”, Electronics & Communication Engineering Journal, vol. 2, pp.221-232, Dec. 1990.
[61] X. Liang and Y.W.M Chia, “New Precision Wideband Direction Finding Antenna”, IEEE Proc. Microw. Antennas Propag., vol. 148, no.6, pp. 363-364, Dec. 2001.
[62] G. Huang, L. Yang and Z. He, “Time-delay Direction Finding Based on Canonical Correlation Analysis”, IEEE International Symposium, vol. 6, pp.5409-5412, May. 2005.
[63] R. G. Wiley, Electronic, Intelligence: The Interception of Radar Signals, Artech House, 1985.
[64] M. Streetly, “Airborne Electronic Warfare: History, Techniques and Tactics”, Jane’s Publishing Co., 1988.
[65] D. D. Vaccaro, Electronic Warfare Receiving Systems, Artech House, 1993.
[66] D.S. Hill, “Multiple signal DF using superresolution: a practical assessment”, Electronics & Communication Engineering Journal, vol. 2, pp.221-232, Dec. 1990.
[67] X. Liang and Y.W.M Chia, “New Precision Wideband Direction Finding Antenna”, IEEE Proc. Microw. Antennas Propag., vol. 148, no.6, pp. 363-364, Dec. 2001.
[68] G. Huang, L. Yang and Z. He, “Time-delay Direction Finding Based on Canonical Correlation Analysis”, IEEE International Symposium, vol. 6, pp.5409-5412, May. 2005.
[69] N. Marchand, “Error Distributions of Best Estimate of Position from Multiple Time Difference Hyperbolic Networks”, IEEE Trans. AES, vol. 11, pp. 96-100, Jun. 1964.
[70] J. L. Poirot and G. V. Mcwilliams, “Application of Linear Statistical Models to Radar Location Techniques”, IEEE Trans. AES, vol. 10, pp. 830-834, Nov. 1974.
[71] Lee, H.B., “A novel procedure for assessing the accuracy of hyperbolic multilateration systems”, IEEE Trans. AES, vol. 11, pp. 2-15, Jan. 1975.
[72] W.H. Foy, “Position-Location Solutions by Taylor-Series Estimation”, IEEE Trans. AES, vol. 12, pp. 187-194, Feb. 1976.
[73] J.L. Poirot and G.V. Mcwilliams, “Navigation by Back Triangulation”, IEEE Trans. AES, vol. 12, pp. 270-274, Mar. 1976.
[74] J.L. Poirot and G. Arbid, “Position Location: Triangulation versus Circulation”, IEEE Trans. AES, vol. 14, pp. 48-53, Jan. 1978.
[75] M. Mangel, “Three Bearing Method for Passive Triangulation in Systems with Unknown Deterministic Biases”, IEEE Trans. AES, vol. 17, pp. 814-819, Nov. 1981.
[76] P.R. Mahapatra, “Emitter Location Independent of Systematic Errors in Direction Finders”, IEEE Trans. AES, vol. 16, pp. 851-855, Jan. 1980.
[77] P.C. Chestnut, “Emitter Location Accuracy Using TDOA and Differential Doppler”, IEEE Trans. AES, vol. 18, pp. 214-218, Mar. 1982.
[78] D. J. Torrieri, “Statistical Theory of Passive Location System”, IEEE Trans. AES, vol. 20, pp.193-198, Mar. 1984.
[79] R. O. Schmidt, “Multiple Emitter Location and Signal Parameter Estimation”, IEEE Trans. AES, vol. 24, 1986.
[80] L. R. Paradowski, “Microwave Emitter Position Location: Present and Future”, Microwave and Radar Conf., MIKON’98, pp. 97-116, 1998.
[81] W. C. Cumming, P. C. Jain, L. J. Richardi, “Fundamental Performance Characteristics that Influence EHF MILSATCOM Systems,” IEEE Trans. Comm., vol. 27, no. 10, pp.1423-1435, 1979.
[82] H. Urkowitz, “Energy Detection of Unknown Deterministic Signal,” Proc. of the IEEE, vol. 55, no. 4, pp. 523-531, Apr. 1967.
[83] D. J. Torrieri, “Fundamental Limitations on Repeater Jamming of Frequency-Hopping Communications,” IEEE Journal on Selected Areas in Communications, vol. 7, pp. 569-575, 1986.
[84] E. B. Felstead, “Follower Jammer Considerations for Frequency Hopped Spread Spectrum,” Pro. of MILCOM’98. IEEE, 1998.
[85] F. K. Jondral, “From Maxwell’s Equations to Cognitive Radio,” 3rd International Conference on Cognitive Radio Oriented Wireless Networks and Communications, 2008, CrownCom 2008, pp. 1-5, 15-17 May 2008.
[86] C. Cordeiro, K. Challapali, D. Birru, et al., “IEEE 802.22: the first worldwide wireless standard based on cognitive radios,” Proc. of 2005 First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, pp. 328-337, Nov. 8-11 2005.
[87] H. Ning, S. S. Hwan, C. J. Hak, et al., ”Spectral correlation based signal detection method for spectrum sensing in IEEE 802.22 WRAN systems,” Proc. of 8th International Conference on Advanced Communication Technology, vol. 3, pp. 1765-1770, 20-22 Feb. 2006.
[88] X. P. Jing, S.-C. Mau, D. Raychaudhuri, et al., “Reactive cognitive radio algorithms for co-existence between IEEE 802.11b and 802.16a networks,” Proc. of IEEE Global Telecommunications Conference, vol. 5, pp. 2465-246928, Nov. - 2 Dec. 2005.
[89] V. Chakravarthy, A. S. Nunez, J. P. Stephens, et al., “TDCS, OFDM, and MC-CDMA: a brief tutorial,” IEEE Commun. Mag., vol. 43, pp. 11-16, 2005.
[90] J. Mitola III, “Cognitive Radio for Flexible Mobile Multimedia Communications,” 1999 IEEE International Workshop on Mobile Multimedia Communications, 1999. (MoMuC '99), pp. 3-10, 15-17 Nov. 1999.
[91] J. Mitola III and G. Q. Maguire Jr., “Cognitive radio: Making software radios more personal,” IEEE Personal Communications, vol. 6, pp. 13-18, 1999.
[92] J. Mitola III, Cognitive Radio Architecture, John Wiley & Sons, Apr. 2006.
[93] F. Akyildiz, W. Y. Lee, M. C. Vuran, and S. Mohanty, “NeXt generation/dynamic spectrum access/cognitive radio wireless networks: A survey,” Computer Network, www.elsevier.com/locate/comnet, 2006.
[94] D. Cabric, S. M. Mishra, R. W. Brodersen, “Implementation issues in spectrum sensing for cognitive radios,” Conference Record of the Thirty-eighth Asilomar Conference on Signals, Systems and Computers, vol. 1, pp. 772-776, 7-10 Nov. 2004.
[95] F. K. Jondral, “Software-defined radio-basic and evolution to cognitive radio, EURASIP Journal on Wireless Communication and Networking, 2005.
[96] FCC, ET Docket No 03-222 Notice of proposed rule making and order, Dec. 2003.
[97] A. Ghasemi and E. S. Sousa, “Collaborative spectrum sensing for opportunistic access in fading environments,” Proc. of 2005 First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, pp. 131-136, 8-11 Nov. 2005.
[98] G. Ganesan and L.Ye, “Agility improvement through cooperative diversity in cognitive radio,” Proc. of IEEE Global Telecommunications Conference, vol. 5, pp. 2505-2509, 28 Nov.-2 Dec. 2005.
[99] G. Ganesan and Y. Li., “Cooperative spectrum sensing in cognitive radio networks,” Proc. of 2005 First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, pp. 137-143, 8-11 Nov. 2005.
[100] G. Ganesan, Y. Li, “Cooperative spectrum sensing in cognitive radio networks,” Proc. of 2005 First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, pp. 137-143, 8-11 Nov. 2005.
[101] A. Taherpour, M. Nasiri-Kenari, and A. Jamshidi,” Efficient Cooperative Spectrum Sensing in Cognitive Radio Networks,” The 18th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC'07), 2007.
[102] N. Hoven and A. Sahai, “Power scaling for cognitive radio”, 2005 International Conference on Wireless Networks, Communications and Mobile Computing, vol. 1, pp. 250-255, 13-16 June 2005.
[103] S. Mangold, A. Jarosch, and C. Monney, “Operator Assisted Cognitive Radio and Dynamic Spectrum Assignment with Dual Beacons - Detailed Evaluation”, First International Conference on Communication System Software and Middleware, 2006. Comsware 2006, vol. 1, pp. 1- 6, 08-12 Jan. 2006.
[104] Y. Xing, R. Chandramouli, S. Mangold, and S. S. N, “Dynamic Spectrum Access in Open Spectrum Wireless Networks,” IEEE Journal on Selected Areas in Communications, vol. 24, pp. 626-637, Mar. 2006.
[105] D. P. Satapathy and J. M. Peha, “Performance of unlicensed devices with spectrum etiquette,” Proc. IEEE GLOBECOM, pp. 414-418, Nov. 1997.
[106] D. P. Satapathy and J. M. Peha, “Etiquette modifications for unlicensed spectrum: Approach and impact,” in Proc. 48th Annu. Int. IEEE Veh. Technol. Conf., vol. 1, pp. 272-276, May 1998.
[107] S. Mangold, Z. Zhong, K. Challapali, and C. T. Chou, “Spectrum agile radio: Radio resource measurements for opportunistic spectrum usage,” Proc. IEEE GLOBECOM, pp. 3467-3471, 2004.
[108] J. Mitola III, “The software radio architecture,” IEEE Commun., vol. 33, no. 5, pp. 26-38, 1995.
[109] D. P. Satapathy and Jon M. Peha, “Performance of Unlicensed Devices With A Spectrum Etiquette,” IEEE Global Telecommunications Conference, 1997. GLOBECOM '97, vol. 1, pp. 414-418, 3-8 Nov. 1998.
[110] N. Devroye, P. Mitran, and V. Tarokh, “Limits on Communications in a Cognitive Radio Channel,” IEEE Commu. Mag., vol. 44, pp. 44-49, Jun. 2006.
[111] E. G. Larsson and M. Skoglund, “Cognitive Radio in a Frequency Planned Environment: Can it Work?,” Proc. IEEE GLOBECOM, pp. 3548-3552, 26-30 Nov. 2007.
[112] R. Tandra and A. Sahai, “Fundamental limits on detection in low SNR under noise uncertainty,” 2005 International Conference on Wireless Networks, Communications and Mobile Computing, pp. 464-469, 13-16 Jun. 2005.
[113] J. Hillenbrand, T. A. Weiss, and F. K. Jondral, “Calculation of detection and false alarm probabilities in spectrum pooling systems,” IEEE Communications Letters, vol. 9, pp. 349-351, Apr. 2005.
[114] H. Su and X. Zhang, “Cross-Layer Based Opportunistic MAC Protocols for QoS Provisionings over Cognitive Radio Wireless Networks,” IEEE Journal on Selected Areas in Communications, vol. 26, No 1, pp.118-129, Jan. 2008.
[115] R. A. Poisel, Electronic Warfare Target Location Methods, Artech House, 2005.
指導教授 蔡木金(Mu-King Tsay) 審核日期 2008-11-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明