國立中央大學 109 學年度碩士班考試入學試題

所別: 光電類

共3頁 第1頁

科目: 工程數學

本科考試可使用計算器,廠牌、功能不拘

*請在答案卷(卡)內作答

-、選擇題 (50%)(選擇題答案請作答於答案卷內,每小題各佔 5%)

- For an equation given as $\frac{dy}{dx} = \frac{2 + \cos(x)}{(y-1)^2}$ with y(0) = 3, what can be y(x)?
 - (A) $y(x) = 1 + [2x + cos(x) + 8]^{1/3}$
 - (B) $y(x) = 1 + [2x + \sin(x) + 8]^{1/3}$
 - (C) $y(x) = 1 + [2x + \sin(x) + 8]^{1/2}$
 - (D) $y(x) = 1 + [x + \sin(x) + 8]^{1/3}$
 - (E) None of the above
- (2) If $\frac{df(t)}{dt} = 4f(t)$, with f(0) = -5, what is f(t)?

 - (A) $-4e^{4t}$ (B) $-2e^{4t}$
- (C) $-5e^{4t}$ (D) $-5e^{-4t}$
- (E) $5e^{4t}$
- A radioactive material with the total amount, M(t), is decaying with the rate: dM(t)/dt = -k. M(t), where t is time and k is some positive constant with the unit of year-1. If the "half-life" is defined as the amount of time (τ) necessary for one-half of the initial amount of material to disappear, meaning $M(\tau) = M(0)/2$. If the radioactive material is of the $k = 4.95 \times 10^{-11}$, what is 2τ for the material?
 - (A) 2.8×10^{10} years
- (B) 1.4×10^{10} years
- (C) 1.4×10^9 years

- (D) 4.95×10^{10} years
- (E) 4.95×10^{11} years
- (4) If $x^2 \frac{dy}{dx} = y^2 xy + x^2$ and y = 2 when x = 1, what is y when x = 1000?
 - (A)100
- (B)500
- (C)0
- (D) 1
- (E)10
- For the differential equation: $(2x + 2y^2) + (4xy + 3y^2) \frac{dy}{dx} = 0$ and c is an arbitrary constant,

what is the relationship between x and y?

- (A) $2x^2 + 2xy^2 + y^3 = c$ (B) $x + 2xy^2 + y^3 = c$ (C) $x^2 + xy^2 + y^3 = c$
- (D) $2x + 2xy^2 + y^3 = c$ (E) $x^2 + 2xy^2 + y^3 = c$
- If f is a function of t and $\frac{df(t)}{dt} = \frac{t}{f(t)} + \frac{f(t)}{t}$ with f(2) = 1, what is f(200)?
 - (A) 1
- (B) $\sqrt{17}$
- (C) 0
- (D) $100\sqrt{17}$
- (E) 100
- For the differential equation: $(2x+1+2y^2)+(4xy+3y^2)\frac{dy}{dx}=0$, if y=-1 when x=0, what can be the value of x when y = 1?
 - (A) -3
- (B) 2
- (C) 1
- (D) 0
- (E) -2

國立中央大學 109 學年度碩士班考試入學試題

所別: 光電類 共3頁 第2頁

工程數學 科目:

本科考試可使用計算器,廠牌、功能不拘

*請在答案卷(卡)內作答

In a semiconductor p-n junction under forward bias, the distribution of hole concentration, p(x), in the *n*-region is determined by the following differential equation: $\frac{d^2p(x)}{dx^2} = \frac{p(x)}{L^2}$, where *L* is referred as the diffusion constant. If $p(\infty) = 0$ and p(0) = C, what can be the form of p(x)?

(C) $p(x) = C e^{-ix/L}$

(A) $p(x) = C e^{-x/L}$ (B) $p(x) = C e^{x/L}$ (D) $p(x) = C e^{-x/L} + C e^{x/L}$ (E) $p(x) = C e^{-ix/L} + C e^{ix/L}$

In quantum mechanics, the wavefunction of a particle, $\psi(x)$, in free space is governed by the (9)Schrodinger equation, given as $\frac{-\hbar^2}{2m}\frac{d^2\psi(x)}{dx^2}=E\psi(x)$, where \hbar is the Planck constant; m, E, x is the mass, the energy, the position of the particle, respectively. What is the form of $\psi(x)$?

(A) $e^{\pm \frac{\sqrt{2mE}}{\hbar}x}$

(B) $e^{\pm i\frac{\sqrt{2mE}}{\hbar}x}$

(C) $e^{\pm i\frac{\sqrt{2mE}}{2\hbar}x}$

(D) $e^{\pm i\frac{\sqrt{m}\overline{E}}{\hbar}x}$

(E) $e^{\pm i\frac{\sqrt{mE}}{2\hbar}x}$

(10) Repeating question (9), if the particle is placed within an infinite well shown blow, the Schrodinger equation is modified as follows: $\frac{-\hbar^2}{2m}\frac{d^2\psi(x)}{dx^2} + V(x)\psi(x) = E\psi(x)$, where V(x) = 0 at $\frac{-a}{2} < x < \frac{a}{2}$; $V(x) = \infty$ at $x \le \frac{-a}{2}$ and $x \ge \frac{a}{2}$. Using the boundary conditions: $\psi\left(\frac{-a}{2}\right) = \psi\left(\frac{a}{2}\right) = 0$ and assuming C is a certain constant and $k = \frac{\sqrt{2mE}}{\hbar}$, what can be the combination of $\psi(x)$ and E?

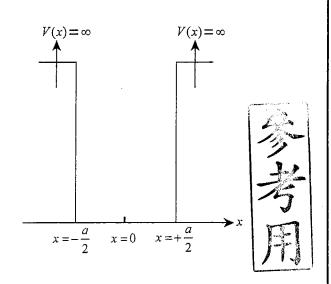
(A) $\psi(x) = C \cdot cos(kx)$ with $E = \frac{2\pi^2 \hbar^2}{ma^2}$;

(B) $\psi(x) = C \cdot \sin(2kx)$ with $E = \frac{\pi^2 \hbar^2}{ma^2}$

(C) $\psi(x) = C \cdot \sin(kx)$ with $E = \frac{2\pi^2 \hbar^2}{ma^2}$;

(D) $\psi(x) = C \cdot cos(kx)$ with $E = \frac{2\pi\hbar^2}{ma^2}$;

(E) $\psi(x) = C \cdot cos(2kx)$ with $E = \frac{\pi^2 h^2}{ma^2}$



注意:背面有試題

國立中央大學109學年度碩士班考試入學試題

所別: 光電類

共3頁 第3頁

科目: 工程數學

本科考試可使用計算器,廠牌、功能不拘

*請在答案卷(卡)內作答

二、計算題 (50%)(詳細計算過程與答案,請作答於答案卷內)

10% (1) The Legendre polynomials $P_n(x)$ are orthogonal with respect to the weight function w(x)=1 on the ontervl (-1,1) and

$$||P_n||^2 = \int_{-1}^1 [P_n(x)]^2 dx = \frac{2}{2n+1}$$
, where $n \ge 0$.

$$P_0(x) = 1$$
, $P_1(x) = x$, $P_2(x) = \frac{1}{2}(3x^2 - 1)$, ...

Therefore, the coefficients in the Fourier-Legendre series, $\sum_{n=0}^{\infty} C_n P_n(x)$, for an arbitrary function f(x) are given by $C_n = \frac{2n+1}{2} \int_{-1}^1 f(x) P_n(x) dx$, $n \ge 0$.

Now, it is given that

$$f(x) = \begin{cases} x, & 0 \le x \le 1 \\ -x, & -1 \le x \le 0. \end{cases}$$

Find the Fourier-Legendre series for f(x).

10% (2) In the Cartesian coordinates, the differential Laplacian operator ∇^2 can be expressed as

$$\nabla^2 \equiv \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

Now, express the differential Laplacian operator ∇^2 in the (u, v, z) parabolic cylindrical coordinating system whose transformation from the Cartesian (x, y, z) is

$$\begin{cases} xy = u \\ x^2 - y^2 = v. \\ z = z \end{cases}$$

(3) Consider a finite wave train defined by:

$$f(t) = \begin{cases} \cos \omega_0 t & |t| < \frac{N\pi}{\omega_0} \\ 0 & |t| > \frac{N\pi}{\omega_0} \end{cases}$$

(a) Perform appropriate Fourier transform of the finite wave train and plot the function out.

No to specify the value of the maximum amplitude and the location where it occurs.

5%

(b) Evaluate the quality factor Q ($\equiv \frac{\Delta \omega}{\omega_0} = \frac{\omega_0 - \omega}{\omega_0}$) and describe how it varies with **N**.

15% (4) Diagonalize the matrix **A** such that the diagonalized matrix $\mathbf{D} = \mathbf{X}^{-1}\mathbf{A}\mathbf{X}$ is diagonal.

Then, find
$$A^{10}$$
. $A = \begin{pmatrix} -1 & 2 & -2 \\ 2 & 4 & 1 \\ 2 & 1 & 4 \end{pmatrix}$