國立中央大學109學年度碩士班考試入學試題

所別: 統計研究所 碩士班 不分組(一般生)

共一頁 第一頁

統計研究所 碩士班 不分組(在職生)

科目: 數理統計

*計算題需計算過程,無計算過程者不予計分

本科考試可使用計算器,廠牌、功能不拘

*請在答案卷(卡)內作答

- 1. A die is rolled, with equal probability for each face to turn up. Let X be the face value that turns up; that is, $P(\{X=i\}) = \frac{1}{6}$, for i=1,2,...,6. Let $Y=X_1+X_2$, where X_1 and X_2 are two independent random variables following this distribution. Compute the *cumulative distribution* function of Y.
- 2. Let $X_1, X_2, ..., X_n$ be sampled from a continuous distribution with finite mean μ ($\mu \neq 0$) and finite variance σ^2 . Suppose one wants to generate random variables that follow the distribution of the harmonic mean $\frac{n}{\sum_{i=1}^{n} X_i}$ under large sample size.
 - (a) Find the asymptotic distribution of $\frac{n}{\sum_{i=1}^{n} X_i}$ as $n \to \infty$. (15%)
 - (b) Prove that for any continuous random variable X with the cumulative distribution function $F(\cdot)$, F(X) has the Uniform(0,1) distribution. (10%)
 - (c) Based on (b), provide a procedure of generating random variables that follow the asymptotic distribution in (a).
- 3. A coin is tossed twice. Let X denote the number of heads $(X \in \{0,1,2\})$ and be modeled by the Binomial $(2,\theta)$, where θ is the probability of heads in a single toss. For this coin, it is known from previous experiments that $\theta \in \{\frac{1}{2}, \frac{1}{3}\}$. Given this condition, compute the maximum likelihood estimate of θ if X = 0 is observed.
- 4. Let $X_1, X_2, ..., X_n$ be a random sample from the density function $f(x; \alpha, \beta) = \frac{1}{\beta} \exp\{-\frac{x-\alpha}{\beta}\}$,

where $\alpha < x < \infty$, $-\infty < \alpha < \infty$, and $\beta > 0$.

(10%)

(a) Find the maximum likelihood estimators of (α, β) .

- (10%)
- (b) Assume $\alpha < 1$. Find the maximum likelihood estimator of $P(\{X_1 \ge 1\})$.
- 5. Let $X_1, X_2, ..., X_n$ be a random sample from *Poisson distribution* with mean θ . Find the uniformly minimum variance unbiased estimator (UMVUE) of $P(\{X_1 = k\})$, where k is a fixed positive integer. (10%)
- 6. Find a most powerful test of size α for H₀: X~f₀(x) against H₁: X~f₁(x) based on a sample of size one, where f₀(x) is the density function of the standard normal distribution and f₁(x) = ¹/₂ exp{-|x|}, x ∈ ℝ.

参考用