博碩士論文 106223011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:3.15.31.27
姓名 楊勛智(Hsun-Chih Yang)  查詢紙本館藏   畢業系所 化學學系
論文名稱 利用機械力化學法快速合成鋯金屬有機骨架材料及其反應機制之探討
(Green and Rapid Mechanochemical Synthesis of Zirconium-based Metal-organic Frameworks and Their Mechanism Study)
相關論文
★ 天然物 Faveline methyl ether 之合成研究★ 人體突變生長激素受質膜內區段與半乳醣凝集素-12的表現、純化與結晶
★ 研究新型奈米粒子載體結合核糖核酸干擾調控在細胞內蛋白之表現★ 具芳香環胺基酸與內環狀結構之中孔洞材料的合成、鑑定與應用
★ 以手性亞碸催化劑進行醛的不對稱乙基化反應之研究★ 噁噻硼烷-氯化鎵錯合物催化不對稱 Diels-Alder 反應之研究
★ 開發心肌缺氧後再灌流傷害用藥與近紅外光染劑的高效率微脂體包覆方法★ Total Synthesis of Pikrosalvin, Simplexene C, D and Synthetic Studies toward Swartziarboreol G and Simplexene B
★ Understanding the Depolymerization of Biomass-derived Polysaccharides: Recrystallization while Hydrolyzing Polysaccharides★ 以手性有機硫催化劑進行不對稱環丙烷化反應並應用於合成吡咯類化合物之研究
★ 一、 以掌性硫化合物進行不對稱 [4+1] 環化反應並應用在吲哚啉類化合物的合成研究二、掌性共價有機框架材料的設計與合成並應用在多烯環化反應★ 第一章 以手性硫催化劑進行不對稱 [4+1] 環化反應並應用於合成吲哚類化合物之研究 第二章 設計與合成手性共價有機骨架並應用至不對稱多烯環化反應
★ 以開環置換聚合反應合成手性共價有機框架材料並將其應用於不對稱催化多烯環化反應之研究★ 利用光固化材料調控R3CE的界面共價修飾及其對三維細胞培養的影響
★ 流感病毒血球凝集素(II)膜外區域之物理化學特性分析★ 中孔洞材料SBA-15及其官能基化衍生材料對溶液中污染物之吸附應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-1-15以後開放)
摘要(中) 近年來,對於金屬有機骨架材料(Metal-organic Frameworks) 的研究獲得相當大的重視。其優秀的孔洞選擇性(pore selectivity)、高比表面積(surface area)、以及較大的內部孔徑,在氣體儲存、分子篩選、反應催化、以及藥物載體上,皆有良好的表現。而其中,以鋯氧配位所形成之金屬有機骨架材料,更是以其優異的熱化穩定性(thermal stability),受到諸多的關注。因此,許多實驗室皆不斷開發以鋯為金屬源的骨架材料,其中以對苯二甲酸(Terephthalic acid, BDC) 為有機配位體的UiO-66(Universitetet i Oslo-66)最受關注。然而,傳統合成金屬骨架材料的方法以熱溶劑法 (solvothermal) 為主,往往需要耗費大量的時間、溶劑、以及高溫的環境。因此本實驗室在2017年時以機械力化學的方式,以微量的溶劑以及時間,於室溫之下合成出了UiO-66-F4 (將苯環上的氫以氟取代),以及其不同官能基的衍生物。此外,我希望可以根據熱溶劑法的機制,推測出機械力化學法的反應機制,並應用在更多的骨架材料之上。除了UiO-66之外,以聯苯二甲酸(Biphenyl-4,4′-dicarboxylic acid BPDC) 為有機配位體的UiO-67;以及以反丁烯二酸(fumaric acid) 為有機配位體的MOF-801皆是以鋯氧鍵形成的骨架材料。而三種不同的有機配位體在利用機械力化學法合成時,皆適合不同的合成環境,藉由調控酸鹼、有機溶劑、以及反應時間等,可得到更為良好的產物。因此,本實驗將以不同的反應環境來快速合成有機金屬骨架材料,已達到綠色化學的目的。同時測試在不同酸鹼的環境下,有機金屬骨架材料是否得以快速成形,以建立之後進行相關實驗時所需要的資料與經驗。
摘要(英) Metal-organic Frameworks (MOFs) are one of the most exciting classes of chemical structures to be discovered in the past decade. Because of their high surface area and thermal stability, MOFs has great behavior in catalysis, drug delivery, gas storage, and molecular separation. MOFs consist of metal nodes and organic linkers, which are connected by coordinate bond. Electrons provided from organic linkers will occupy the empty orbitals from metal atoms to form a strong covalent bond. Especially the MOFs contain zirconium-oxygen bonds, exhibit outstanding thermal and chemical stability. For example, UiO-66, UiO-67, MOF-801, are composed by zirconium cluster and dicarboxylic acid, such as terephthalic acid, biphenyl-4,4′-dicarboxylic acid, and fumaric acid, exhibit excellent thermal and chemical stabilities. However, conventional methods for obtaining MOF materials require a lot of time, organic solvent under high temperatures. Due to our lab utilizes mechanochemistry to synthesize UiO-66-F4 in short time and reduce the solvent cost dramatically. With this concept, we try to synthesize more and more MOFs by this method, meanwhile, the derives of UiO-66 are our first target.
To synthesize MOFs with mechanochemistry, the metal reactant must be changed. Traditionally, we synthesize MOFs with metal salts such as ZrCl4, and ZrOCl2. These metal salts easily dissolve into the organic solvent such as dimethylformamide (DMF) and Dimethylsulfoxide (DMSO). However, when the reactants in the reaction grinding can, there is only little solvent inside, so we have to use zirconium cluster to synthesize the zirconium organic frameworks. Zirconium clusters are synthesized with zirconium propoxide and monoprotic acids such as methacrylic acid and acetic acid. These two clusters are used in my experiments and I successfully synthesize UiO-66 and UiO-67 with these clusters. However, the mechanism of mechanochemistry is the key point we wonder. So I synthesize zirconium-MOFs with different conditions, I changed pH values, solvent volumes, and clusters, to figure out what make MOFs crystallized successfully in the reaction. At last, I found that suitable reaction speed is the key point to synthesize the MOFs. In the basic condition, the dissociation of organic linkers will be too fast to form crystal structures, most reactants will form the amorphous products. In contrast, when the organic linkers in acidic environments the proton will not dissociate easily, and the reaction will not progress, neither. In the end, we exploit this concept to synthesize MOF-801 with mechanochemistry successfully and hope the experiences can be utilized in the future.
關鍵字(中) ★ 金屬有機骨架材料
★ 機械力化學
★ 快速合成
關鍵字(英) ★ MOF
★ metal-organic framework
★ UiO-66
★ UiO-67
★ MOF-801
★ mechanochemistry
論文目次 目錄
中文摘要 ............................ I
Abstract............................ III
第一章 緒論 ................... 1
1-1 金屬有機骨架材料(Metal-organic Frameworks) .............................. 1
1-2 鋯金屬有機骨架材料(Zirconium Metal-organic Frameworks) .............................. 4
1-3 MOF UiO 之文獻回顧 ........ 6
1-4 MOF-801 之文獻回顧 ........ 8
1-5 研究動機與目的 ............ 10
第二章 實驗部分 ............... 13
2-1 實驗藥品 .................. 13
2-2 實驗儀器 .................. 15
2-3 實驗儀器之原理 ............ 16
2-3-1 中量快速球磨機(Ball Mill Instrument) .............................. 16
2-3-2 X 光粉末繞射儀(X-ray Powder Diffractometer)43 .............................. 17
2-3-2 等溫氮氣吸/脫附儀44 ..... 19
2-3-3 穿透式電子顯微鏡(Transmission Electron Microscope, TEM)45.........................21
2-3-4 熱重分析儀(Thermogravimetric Analyzer;TGA)46 .............................. 22
2-4 實驗步驟 .................. 23
2-4-1 熱溶劑法(Solvothermal) – UiO-66 之合成 .............................. 23
2-4-2 熱溶劑法(Solvothermal) – MOF-801(Zr-fum)之合成 .............................. 23
2-4-3 熱溶劑法(Solvothermal) – UiO-67 之合成47 .............................. 24
2-4-4 以甲基丙烯酸進行鋯金屬團簇之合成 (Zirconium(Ⅳ)-oxo-hydroxy methacrylate)48....... 25
2-4-5 以醋酸進行鋯金屬團簇之合成(Zirconium(Ⅳ)-oxo-hydroxy acetate) ..................... 25
2-4-6 機械力化學法(Mechanochemistry) - UiO-66 的合成 .............................. 26
2-4-7 機械力化學法(Mechanochemistry) – MOF-801 的合成 .............................. 27
2-4-8 機械力化學法(Mechanochemistry) – UiO-67 的合成 .............................. 27
第三章 結果與討論 ............. 29
3-1 UiO-66 的合成結果 ......... 29
3-2 以甲基丙烯酸鋯團簇合成UiO-67 的合成結果 .............................. 33
3-3 以醋酸鋯團簇合成UiO-67 的合成結果............................ 39
3-4 MOF-801(Zr-fum)的合成結果 .............................. 41
第四章 結論以及未來展望 ........ 45
第五章 參考文獻 ............... 46
參考文獻 1. Yaghi, O. M.; Li, G.; Li, H., Selective binding and removal of guests in a microporous metal–organic framework. Nature 1995, 378 (6558), 703-706.
2. Yaghi, O. M.; Li, H.; Davis, C.; Richardson, D.; Groy, T. L., Synthetic Strategies, Structure Patterns, and Emerging Properties in the Chemistry of Modular Porous Solids. Accounts of Chemical Research 1998, 31 (8), 474-484.
3. Schaate, A.; Roy, P.; Godt, A.; Lippke, J.; Waltz, F.; Wiebcke, M.; Behrens, P., Modulated Synthesis of Zr-Based Metal-Organic Frameworks: From Nano to Single Crystals. Chemistry (Weinheim an der Bergstrasse, Germany) 2011, 17, 6643-51.
4. Dau, P. V. Functionalized Metal-organic Frameworks for Applications in Gas Storage and Catalysis. 2014.
5. Cooper, E. R.; Andrews, C. D.; Wheatley, P. S.; Webb, P. B.; Wormald, P.; Morris, R. E., Ionic liquids and eutectic mixtures as solvent and template in synthesis of zeolite analogues. Nature 2004, 430 (7003), 1012-1016.
6. Wu, S.-H.; Mou, C.-Y.; Lin, H.-P., Synthesis of mesoporous silica nanoparticles. Chemical Society Reviews 2013, 42 (9), 3862-3875.
7. Gupta, V. K.; Agarwal, S.; Saleh, T. A., Synthesis and characterization of alumina-coated carbon nanotubes and their application for lead removal. Journal of Hazardous Materials 2011, 185 (1), 17-23.
8. Furukawa, H.; Cordova, K.; O′Keeffe, M.; Yaghi, O., ChemInform Abstract: The Chemistry and Applications of Metal-Organic Frameworks. Science (New York, N.Y.) 2013, 341, 1230444.
9. Hu, Z.; Peng, Y.; Kang, Z.; Qian, Y.; Zhao, D., A Modulated Hydrothermal (MHT) Approach for the Facile Synthesis of UiO-66-Type MOFs. Inorganic Chemistry 2015, 54 (10), 4862-4868.
10. Li, J.; Cheng, S.; Zhao, Q.; Long, P.; Dong, J., Synthesis and hydrogen-storage behavior of metal–organic framework MOF-5. International Journal of Hydrogen Energy 2009, 34 (3), 1377-1382.
11. Liang, W.; D′Alessandro, D. M., Microwave-assisted solvothermal synthesis of zirconium oxide based metal–organic frameworks. Chemical Communications 2013, 49 (35), 3706-3708.
12. Ni, Z.; Masel, R. I., Rapid Production of Metal−Organic Frameworks via Microwave-Assisted Solvothermal Synthesis. Journal of the American Chemical Society 2006, 128 (38), 12394-12395.
13. Loera-Serna, S.; Oliver-Tolentino, M. A.; de Lourdes López-Núñez, M.; Santana-Cruz, A.; Guzmán-Vargas, A.; Cabrera-Sierra, R.; Beltrán, H. I.; Flores, J., Electrochemical behavior of [Cu3(BTC)2] metal–organic framework: The effect of the method of synthesis. Journal of Alloys and Compounds 2012, 540, 113-120.
14. Van Assche, T. R. C.; Desmet, G.; Ameloot, R.; De Vos, D. E.; Terryn, H.; Denayer, J. F. M., Electrochemical synthesis of thin HKUST-1 layers on copper mesh. Microporous and Mesoporous Materials 2012, 158, 209-213.
15. Julien, P. A.; Užarević, K.; Katsenis, A. D.; Kimber, S. A. J.; Wang, T.; Farha, O. K.; Zhang, Y.; Casaban, J.; Germann, L. S.; Etter, M.; Dinnebier, R. E.; James, S. L.; Halasz, I.; Friščić, T., In Situ Monitoring and Mechanism of the Mechanochemical Formation of a Microporous MOF-74 Framework. Journal of the American Chemical Society 2016, 138 (9), 2929-2932.
16. Lv, D.; Chen, Y.; Li, Y.; Shi, R.; Wu, H.; Sun, X.; Xiao, J.; Xi, H.; Xia, Q.; Li, Z., Efficient Mechanochemical Synthesis of MOF-5 for Linear Alkanes Adsorption. Journal of Chemical & Engineering Data 2017, 62 (7), 2030-2036.
17. Son, W.-J.; Kim, J.; Kim, J.; Ahn, W.-S., Sonochemical synthesis of MOF-5. Chemical Communications 2008, (47), 6336-6338.
18. Rabenau, A., The Role of Hydrothermal Synthesis in Preparative Chemistry. Angewandte Chemie International Edition in English 1985, 24 (12), 1026-1040.
19. Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; O′Keeffe, M.; Yaghi, O. M., High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO<sub>2</sub> Capture. Science 2008, 319 (5865), 939-943.
20. Schaate, A.; Roy, P.; Preuße, T.; Lohmeier, S. J.; Godt, A.; Behrens, P., Porous Interpenetrated Zirconium–Organic Frameworks (PIZOFs): A Chemically Versatile Family of Metal–Organic Frameworks. Chemistry – A European Journal 2011, 17 (34), 9320-9325.
21. Kandiah, M.; Nilsen, M. H.; Usseglio, S.; Jakobsen, S.; Olsbye, U.; Tilset, M.; Larabi, C.; Quadrelli, E. A.; Bonino, F.; Lillerud, K. P., Synthesis and Stability of Tagged UiO-66 Zr-MOFs. Chemistry of Materials 2010, 22 (24), 6632-6640.
22. Feng, D.; Gu, Z.-Y.; Li, J.-R.; Jiang, H.-L.; Wei, Z.; Zhou, H.-C., Zirconium-Metalloporphyrin PCN-222: Mesoporous Metal–Organic Frameworks with Ultrahigh Stability as Biomimetic Catalysts. Angewandte Chemie International Edition 2012, 51 (41), 10307-10310.
23. Usov, P. M.; Ahrenholtz, S. R.; Maza, W. A.; Stratakes, B.; Epley, C. C.; Kessinger, M. C.; Zhu, J.; Morris, A. J., Cooperative electrochemical water oxidation by Zr nodes and Ni–porphyrin linkers of a PCN-224 MOF thin film. Journal of Materials Chemistry A 2016, 4 (43), 16818-16823.
24. Zhuang, G.-l.; Bai, J.-q.; Tan, L.; Huang, H.-l.; Gao, Y.-f.; Zhong, X.; Zhong, C.-l.; Wang, J.-g., Preparation and catalytic properties of Pd nanoparticles supported on micro-crystal DUT-67 MOFs. RSC Advances 2015, 5 (41), 32714-32719.
25. Peng, Y.; Srinivas, G.; Wilmer, C. E.; Eryazici, I.; Snurr, R. Q.; Hupp, J. T.; Yildirim, T.; Farha, O. K., Simultaneously high gravimetric and volumetric methane uptake characteristics of the metal–organic framework NU-111. Chemical Communications 2013, 49 (29), 2992-2994.
26. Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P., A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. Journal of the American Chemical Society 2008, 130 (42), 13850-13851.
27. Katz, M. J.; Brown, Z. J.; Colón, Y. J.; Siu, P. W.; Scheidt, K. A.; Snurr, R. Q.; Hupp, J. T.; Farha, O. K., A facile synthesis of UiO-66, UiO-67 and their derivatives. Chemical Communications 2013, 49 (82), 9449-9451.
28. Bon, V.; Senkovskyy, V.; Senkovska, I.; Kaskel, S., Zr(iv) and Hf(iv) based metal–organic frameworks with reo-topology. Chemical Communications 2012, 48 (67), 8407-8409.
29. Yuan, S.; Feng, L.; Wang, K.; Jiandong, P.; Bosch, M.; Lollar, C.; Sun, Y.; Qin, J.-s.; Yang, X.; Zhang, P.; Wang, Q.; Zou, L.; Zhang, Y.; Zhang, L.; Fang, Y.; Li, J.; Zhou, H.-C., Stable Metal-Organic Frameworks: Design, Synthesis, and Applications. Advanced Materials 2018, 30, 1704303.
30. Shearer, G. C.; Chavan, S.; Ethiraj, J.; Vitillo, J. G.; Svelle, S.; Olsbye, U.; Lamberti, C.; Bordiga, S.; Lillerud, K. P., Tuned to Perfection: Ironing Out the Defects in Metal–Organic Framework UiO-66. Chemistry of Materials 2014, 26 (14), 4068-4071.
31. Trickett, C. A.; Gagnon, K. J.; Lee, S.; Gándara, F.; Bürgi, H.-B.; Yaghi, O. M., Definitive Molecular Level Characterization of Defects in UiO-66 Crystals. Angewandte Chemie International Edition 2015, 54 (38), 11162-11167.
32. Xu, Z.; Yang, L.; Xu, C., Pt@UiO-66 Heterostructures for Highly Selective Detection of Hydrogen Peroxide with an Extended Linear Range. Analytical Chemistry 2015, 87 (6), 3438-3444.
33. Orellana-Tavra, C.; Baxter, E. F.; Tian, T.; Bennett, T. D.; Slater, N. K. H.; Cheetham, A. K.; Fairen-Jimenez, D., Amorphous metal–organic frameworks for drug delivery. Chemical Communications 2015, 51 (73), 13878-13881.
34. Alezi, D.; Belmabkhout, Y.; Suyetin, M.; Bhatt, P. M.; Weseliński, Ł. J.; Solovyeva, V.; Adil, K.; Spanopoulos, I.; Trikalitis, P. N.; Emwas, A.-H.; Eddaoudi, M., MOF Crystal Chemistry Paving the Way to Gas Storage Needs: Aluminum-Based soc-MOF for CH4, O2, and CO2 Storage. Journal of the American Chemical Society 2015, 137 (41), 13308-13318.
35. Wißmann, G.; Schaate, A.; Lilienthal, S.; Bremer, I.; Schneider, A. M.; Behrens, P., Modulated synthesis of Zr-fumarate MOF. Microporous and Mesoporous Materials 2012, 152, 64-70.
36. Wang, S.; Xhaferaj, N.; Wahiduzzaman, M.; Oyekan, K.; Li, X.; Wei, K.; Zheng, B.; Tissot, A.; Marrot, J.; Shepard, W.; Martineau-Corcos, C.; Filinchuk, Y.; Tan, K.; Maurin, G.; Serre, C., Engineering Structural Dynamics of Zirconium Metal–Organic Frameworks Based on Natural C4 Linkers. Journal of the American Chemical Society 2019, 141 (43), 17207-17216.
37. Shieh, F.-K.; Wang, S.-C.; Leo, S.-Y.; Wu, K. C.-W., Water-Based Synthesis of Zeolitic Imidazolate Framework-90 (ZIF-90) with a Controllable Particle Size. Chemistry – A European Journal 2013, 19 (34), 11139-11142.
38. Shieh, F.-K.; Wang, S.-C.; Yen, C.-I.; Wu, C.-C.; Dutta, S.; Chou, L.-Y.; Morabito, J. V.; Hu, P.; Hsu, M.-H.; Wu, K. C. W.; Tsung, C.-K., Imparting Functionality to Biocatalysts via Embedding Enzymes into Nanoporous Materials by a de Novo Approach: Size-Selective Sheltering of Catalase in Metal–Organic Framework Microcrystals. Journal of the American Chemical Society 2015, 137 (13), 4276-4279.
39. Liao, F.-S.; Lo, W.-S.; Hsu, Y.-S.; Wu, C.-C.; Wang, S.-C.; Shieh, F.-K.; Morabito, J. V.; Chou, L.-Y.; Wu, K. C. W.; Tsung, C.-K., Shielding against Unfolding by Embedding Enzymes in Metal–Organic Frameworks via a de Novo Approach. Journal of the American Chemical Society 2017, 139 (19), 6530-6533.
40. Yu, L.-Q.; Yan, X.-P., Covalent bonding of zeolitic imidazolate framework-90 to functionalized silica fibers for solid-phase microextraction. Chemical Communications 2013, 49 (21), 2142-2144.
41. Tireli, M.; Juribašić Kulcsár, M.; Cindro, N.; Gracin, D.; Biliškov, N.; Borovina, M.; Ćurić, M.; Halasz, I.; Užarević, K., Mechanochemical reactions studied by in situ Raman spectroscopy: base catalysis in liquid-assisted grinding. Chemical Communications 2015, 51 (38), 8058-8061.
42. Beyer, M. K.; Clausen-Schaumann, H., Mechanochemistry:  The Mechanical Activation of Covalent Bonds. Chemical Reviews 2005, 105 (8), 2921-2948.
43. Chauhan, C.; Bioanal, J., Powder XRD Technique and Its Application. Journal of Analytical & Bioanalytical Techniques 2014, 5.
44. Naderi, M., Chapter Fourteen - Surface Area: Brunauer–Emmett–Teller (BET). In Progress in Filtration and Separation, Tarleton, S., Ed. Academic Press: Oxford, 2015; pp 585-608.
45. Wang, Z. L., Transmission Electron Microscopy of Shape-Controlled Nanocrystals and Their Assemblies. The Journal of Physical Chemistry B 2000, 104 (6), 1153-1175.
46. Spjut, R. E.; Bar‐Ziv, E.; Sarofim, A. F.; Longwell, J. P., Electrodynamic thermogravimetric analyzer. Review of Scientific Instruments 1986, 57 (8), 1604-1610.
47. Chavan, S.; Vitillo, J. G.; Gianolio, D.; Zavorotynska, O.; Civalleri, B.; Jakobsen, S.; Nilsen, M. H.; Valenzano, L.; Lamberti, C.; Lillerud, K. P.; Bordiga, S., H2storage in isostructural UiO-67 and UiO-66 MOFs. Physical Chemistry Chemical Physics 2012, 14 (5), 1614-1626.
48. Kickelbick, G.; Schubert, U., Oxozirconium Methacrylate Clusters: Zr6(OH)4O4(OMc)12 and Zr4O2(OMc)12 (OMc = Methacrylate). Chemische Berichte 1997, 130 (4), 473-478.
49. Wei, T.-H.; Wu, S.-H.; Huang, Y.-D.; Lo, W.-S.; Williams, B. P.; Chen, S.-Y.; Yang, H.-C.; Hsu, Y.-S.; Lin, Z.-Y.; Chen, X.-H.; Kuo, P.-E.; Chou, L.-Y.; Tsung, C.-K.; Shieh, F.-K., Rapid mechanochemical encapsulation of biocatalysts into robust metal–organic frameworks. Nature Communications 2019, 10 (1), 5002.
指導教授 謝發坤(Fa-Kuen Shieh) 審核日期 2020-1-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明