博碩士論文 106226063 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:3.144.124.232
姓名 羅郁仁(YU-REN LUO)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 無機/有機異質界面垂直發光電晶體之研究
(Inorganic/Organic Hybrid Vertical Light-Emitting Transistor)
相關論文
★ 以膠體微影技術應用於開孔電極垂直式有機電晶體之研究★ 有機高分子電化學發光元件
★ 開孔電極結構對於垂直式有機電晶體電性影響之研究★ 微米光柵壓印有機太陽能電池主動層之研究
★ 有機波導結構的ASE現象研究以及共振腔結構的模擬★ 利用金屬微共振腔研究光與有機激發態強耦合現象
★ 多層式雙極有機場效電晶體之研究★ 電光非週期性晶疇極化反轉鈮酸鋰波導定向耦合元件之研究
★ 全氟己基四聯?吩共軛分子奈米結構成長與其對薄膜電晶體電性影響之研究★ 有機染料分子薄膜之光電特性研究
★ 多層結構有機電晶體之研究★ 利用氧流量調整改善短通道氧化物半導體在高電場下的電流崩潰現象
★ 有機強耦合共振腔元件設計與發光量測系統架設之研究★ 強耦合有機微共振腔之設計與研究
★ 光激發有機極化子元件之製作與量測★ 即時多角度量測光譜儀系統應用於有機發光二極體空間頻譜之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-1-14以後開放)
摘要(中) 本論文主要研究下注入式垂直式發光電晶體,主要架構為氧化鋅電晶體上堆疊有機發光二極體。氧化鋅電晶體為上接觸/下閘極的結構,以透明導電膜為閘極,使用原子層沉積,沉積高介電係數的三氧化二鋁與氧化鉿作為雙層介電層,及N型材料氧化鋅作為半導體層,載子遷移率高達11-12 cm2/Vs。形成低驅動電壓、低接觸電阻及高電子流密度之橫向電晶體。將橫向電晶體源極與汲極接觸作為垂直式發光電晶體源極,以光阻墊高劑與光阻雙層結構,透過光學微影技術,在源極金屬上鍍製絕緣層氧化矽,抑制關電流密度,並有效提高開/關電流比。使用綠光有機材料PFO:F8BT作為發光層。以閘極電壓3V驅動,可得到高電流密度1 A/cm2及高開/關比105-106的下出光垂直發光電晶體,而外部量子效率也接近對應的有機發光二極體的外部量子效率。發光區可由光學微影將氧化鋅圖案化,明確定義發光面積,且能達到次微米等級,具有高開口率等優勢。
摘要(英) This thesis mainly studies on down-injection vertical light-emitting transistors (VLET) which is demonstrated by integration of a ZnO transistor and organic light-emitting diode (OLED). The zinc oxide transistor is a top-contact / bottom-gate structure, a transparent conductive film is used as a gate. Atomic layer deposition (ALD) is used to deposit aluminum oxide and hafnium oxide, which are the high dielectric constant material, as a double dielectric layers and N-type material zinc oxide as a semiconductor layer, the mobility is as high as 11-12 cm2 / Vs. Thus the lateral transistor has low driving voltage, low contact resistance and high electron current density. The source and the drain of the lateral transistor contact together as the source of VLET. With the double-layer structure of LOR and photoresist, through the optical lithography technology, an insulating layer of silicon oxide (SiOx) is deposited on the source to reduce the off-current density, and to improve the on / off current ratio. Use the green organic material PFO: F8BT as the light-emitting layer. Driven by a gate voltage of 3V, the bottom-emission vertical light-emitting transistor produces high current density 1A/cm2 and high on / off ratio 105-106, and the external quantum efficiency(EQE) is close to the EQE of corresponding OLED. The ZnO layer can be patterned by optical lithography to clearly define ligt emitting area, and can reach the sub-micron level, which has the advantages of high aperture ratio and so on.
關鍵字(中) ★ 無機/有機異質界面
★ 垂直發光電晶體
關鍵字(英) ★ Inorganic/Organic Hybrid
★ Vertical Light-Emitting Transistor
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 xii
第一章 緒論 1
1-1前言 1
1-2場效電晶體 2
1-3 垂直式電晶體 3
1-4 有機發光二極體 9
1-5 研究目的與動機 10
第二章基礎原理 12
2-1場效電晶體 12
2-1-1場效電晶體基本架構 13
2-1-2場效電晶體之工作原理 15
2-1-3場效電晶體之電流對電壓關係與重要參數 19
2-2垂直式電晶體之工作原理 22
2-1-1垂直電晶體-轉換特性曲線與開/關電流比 27
2-3有機發光二極體之工作原理 28
2-3-1有機發光二極體結構與理論 28
2-3-2量子效率(Quantum Efficiency) 31
第三章 實驗方法與架構 33
3.1 實驗架構及材料介紹 33
3-1-1 介電層材料 34
3-1-2 半導體層材料介紹 35
3-1-3 有機發光層材料介紹 36
3-1-4 金屬電極材料介紹 36
3-2 實驗儀器 37
3-2-1 手套箱(Glove Box) 37
3-2-2 熱蒸鍍機(Thermal Evaporation Coater) 38
3-2-3 原子層沉積(Atomic Layer Deposition, ALD) 39
3-2-5 紫外光臭氧清洗機(UV-Ozone) 41
3-2-5 手動光罩接合對準器(Mask and Bond Aligner) 42
3-2-7 半導體參數分析儀(Semiconductor Parameter Analyzer, SPA) 43
3-2-8 場發射掃描式電子顯微鏡(Field-Emission Scanning Electron Microscopy, FE-SEM) 44
3-2-9 阻抗分析儀 (LF Impedance Analyzer) 47
3-3 實驗方法與製備 48
3-3-1 橫向電晶體元件製程 48
3-3-2 倒置結構有機發光二極體元件製程 52
3-3-3 垂直發光電晶體製程 55
第四章 結果與討論 58
4-1氧化鋅橫向電晶體 58
4-2倒置結構(Inverted structure)OLED 62
4-3低電壓驅動下注入式垂直發光電晶體 65
4-3-1 阻擋層SiOx 65
4-3-2 下注入式氧化鋅垂直電晶體 67
4-3-3 下注入式垂直發光電晶體 70
第五章 結論與未來展望 76
參考文獻 77
參考文獻 [1] She, X.-J., Gustafsson, D., & Sirringhaus, H. (2016). A Vertical Organic Transistor Architecture for Fast Nonvolatile Memory. Advanced Materials, 29(8), 1604769.
[2] Kwon, H., Kim, M., Cho, H., Moon, H., Lee, J., & Yoo, S. (2016). Toward High-Output Organic Vertical Field Effect Transistors: Key Design Parameters. Advanced Functional Materials, 26(38), 6888–6895.
[3] Ben-Sasson, A. J., Greenman, M., Roichman, Y., & Tessler, N. (2014). The Mechanism of Operation of Lateral and Vertical Organic Field Effect Transistors. Israel Journal of Chemistry, 54(5-6), 568–585.
[4] L. Ma, Y. Yang, Applied Physics Letters, 85 (2004) 5084.
[5] A. J. Ben-Sasson, E. Avnon, E. Ploshnik, O. Globerman, R. Shenhar, G. L. Frey, N. Tessler, Applied Physics Letters, 95 (2009) 213301.
[6] C. M. Keum, I. H. Lee, S. H. Lee, G. J. Lee, M. H. Kim, S. D. Lee, Optics Express, 22 (2014) 14750.
[7] K. Y. Wu, Y. T. Tao, C. C. Ho, W. L. Lee, T. P. Perng, Applied Physics Letters, 99 (2011) 093306 .
[8] A. J. Ben-Sasson, D. Azulai, H. Gilon, A. Facchetti, G. Markovich, N. Tessler, ACS Applied Mater, 7 (2015) 2149-2152.
[9] Nakamura, K., Hata, T., Yoshizawa, A., Obata, K., Endo, H., & Kudo, K. (2006). Metal-insulator-semiconductor-type organic light-emitting transistor on plastic substrate. Applied Physics Letters, 89(10), 103525.
[10] Lee, G., Lee, I.-H., Park, H.-L., Lee, S.-H., Han, J., Lee, C., … Lee, S.-D. (2017). Vertical organic light-emitting transistor showing a high current on/off ratio through dielectric encapsulation for the effective charge pathway. Journal of Applied Physics, 121(2), 024502.
[11] Franz Michael Sawatzki, Duy Hai Doan, Hans Kleemann,Matthias Liero,Annegret Glitzky,Thomas Koprucki, and Karl Leo, “Balance of Horizontal and Vertical Charge Transport in Organic Field-Effect
Transistors,” PHYSICAL REVIEW APPLIED 10, 034069 (2018).
[12] M. Pope, H. P. Kallmann, and P. Magnante, J. Chem. Phys. 38, 2042 (1963)
[13] M. Greenman, A. J. Ben-Sasson, Z. Chen, A. Facchetti, N. Tessler, Applied Physics Letters, 103 (2013) 073502.
[14] A. J. Ben-Sasson , N, Tessler, Nano Letter, 12 (2012) 4729-4733.
[15] Kwon, S., Bang, S., Lee, S., Jeon, S., Jeong, W., Kim, H., … Jeon, H. (2009). Characteristics of the ZnO thin film transistor by atomic layer deposition at various temperatures. Semiconductor Science and Technology, 24(3), 035015.
[16] Cui, G., Han, D., Dong, J., Cong, Y., Zhang, X., Li, H., … Wang, Y. (2017). Effects of channel structure consisting of ZnO/Al2O3 multilayers on thin-film transistors fabricated by atomic layer deposition. Japanese Journal of Applied Physics, 56(4S), 04CG03.
[17] Huby, N., Ferrari, S., Guziewicz, E., Godlewski, M., & Osinniy, V. (2008). Electrical behavior of zinc oxide layers grown by low temperature atomic layer deposition. Applied Physics Letters, 92(2), 023502.
[18] Oh, M. S., Lee, K., Song, J. H., Lee, B. H., Sung, M. M., Hwang, D. K., & Im, S. (2008). Improving the Gate Stability of ZnO Thin-Film Transistors with Aluminum Oxide Dielectric Layers. Journal of The Electrochemical Society, 155(12), H1009.
[19] Liu, X., Ramanathan, S., & Seidel, T. E. (2003). Atomic Layer Deposition of Hafnium Oxide Thin Films from Tetrakis(dimethylamino)Hafnium (TDMAH) and Ozone. MRS Proceedings, 765.
[20] W.D. Gill, Journal of Applied Physics, 43 (1972) 5033.
[21] M. Shtein, J. Mapel, J.B. Benziger, S.R. Forrest, Applied Physics Letters, 81 (2002) 268.
[22] K.C. Yoon MH, Facchetti A, Marks TJ., J Am Chem Soc, 128(39) (2006) 12851-12869.
[23] Y. Kato, S. Iba, R. Teramoto, T. Sekitani, T. Someya, H. Kawaguchi, T. Sakurai, Applied Physics Letters, 84 (2004) 3789.
[24] H.S. Jana Zaumseil, Chem. Rev, 107 (2007) 1296-1323.
[25] Natalie Stutzmann, Richard H. Friend, and Henning Sirringhaus, Self-aligned, vertical-channel polymer field-effect transistors, Science 299, 1881 (2003).
[26] Sawatzki, F. M., Hauke, A. A., Doan, D. H., Formanek, P., Kasemann, D., Koprucki, T., & Leo, K. (2017). On Razors Edge: Influence of the Source Insulator Edge on the Charge Transport of Vertical Organic Field Effect Transistors. MRS Advances, 2(23), 1249–1257.
[27] Gil Sheleg, Michael Greenman, Bjorn Lussem, and Nir Tessler, “Removing the current-limit of vertical organic field effect transistors, ”JOURNAL OF APPLIED PHYSICS 122, 195502 (2017)
[28] Dinesh Kabra, Li Ping Lu, Myoung Hoon Song, Henry J. Snaith,
and Richard H. Friend, “Efficient Single-Layer Polymer Light-Emitting Diodes,”Adv. Mater. 2010, 22, 3194–3198.
[29] J.-F. Chang, Y.-C. Lai, R.-H. Yang, Y.-W. Yang, & C.-H. Wang. (2017). Improvement of vertical organic field-effect transistors by surface modification of metallic source electrodes. Applied Physics Express, 10, 11601.
[30] Li Ping Lu, Dinesh Kabra, and Richard H. Friend, “Barium Hydroxide as an Intrelayer Between Zinc Oxide and a Luminescent Conjugated Polymer for Light-Emitting Diode,”Adv. Funct. Mater. (2012).
[31] Li Ping Lu, Chris E. Finlayson and Richard H. Friend,“A study of tin oxide as an election injection layer in hybrid polymer Light-emitting diodes,”Semicond. Sci. Technol. 29 (2014).
指導教授 張瑞芬(Jui-Fen Chang) 審核日期 2020-1-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明