博碩士論文 107226601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:18.119.0.158
姓名 陳妙美(Tran Dieu My)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 退火Ge薄膜的性能研究
(Research on the properties of the annealed Ge thin films)
相關論文
★ 膜堆光學導納量測儀★ 以奈米壓印改善陽極氧化鋁週期性
★ 含氫矽薄膜太陽電池材料之光電特性研究★ 自我複製結構膜光學性質之研究
★ 溫度及應力對高密度分波多工器(DWDM)濾光片中心波長飄移之研究★ 以射頻磁控濺鍍法鍍製P型和N型微晶矽薄膜之研究
★ 以奈米小球提升矽薄膜太陽能電池吸收之研究★ 定光電流量測法在氫化矽薄膜特性的研究
★ 動態干涉儀量測薄膜之光學常數★ 反應式濺鍍過渡態矽薄膜之研究
★ 光子晶體偏振分光鏡之設計與製作★ 偏壓對射頻濺鍍非晶矽太陽能薄膜特性之研究
★ 負折射率材料應用於抗反射與窄帶濾光片之設計★ 負電荷介質材料在矽晶太陽電池之研究
★ 自我複製式偏振分光鏡製作與誤差分析★ 以光激發螢光影像量測矽太陽能電池額外載子生命期及串聯電阻分佈之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 由於高效率III-V族太陽能電池的性能優越,近來受到廣泛注意。而晶格匹配的基板在太陽能電池製造中被認為是非常重要的。本研究在Si基板上成長Ge磊晶薄膜,作為製造高效率III-V族太陽能電池的虛擬鍺基板。我們使用的兩種主要方法是射頻磁控濺射和迴圈熱退火。在Si基板上利用射頻磁控濺射沉積鍺磊晶薄膜與其它技術相比具有成本低的優點,也是一種安全的製造方法。為了降低螺紋狀差排密度(TDD)和減少缺陷,在Si表面沉積Ge磊晶薄膜後進行迴圈熱退火。由於Si和Ge在熱膨脹係數上的不匹配,退火後Ge薄膜的平面應力由壓縮變為拉伸。然後,我們將利用X光繞射(XRD)、拉曼光譜、原子力顯微鏡(AFM)和掃描電子顯微鏡(SEM)分析迴圈退火的影響以及TDD的還原機制。
摘要(英) III-V solar cells are becoming more widely known for their high efficiency and performance. Hence, a lattice - matched substrate is considered very important in their manufacturing. In this thesis, Ge epitaxial films on Si substrates are used as a virtual Ge substrate to manufacture highly efficient III-V solar cells. The two main methods employed are RF magnetron sputtering and cyclic thermal annealing. Ge epitaxial film will be deposited on the Si substrate via the RF magnetron sputtering method due to its lower cost and safety. Cycle thermal annealing is carried out after the deposition of Ge film on Si with the aim of reducing the threading dislocation density (TDD) and defects. Due to the mismatch between Si and Ge in terms of the thermal expansion coefficient, after the annealing process, the plane strain of the Ge film will be changed from compression to tension. We analyzed the effects of the cycle annealing as well as the TDD reduction mechanism via X-ray diffraction (XRD), Raman spectroscopy, atomic force microscopy (AFM), and scanning electron microscopy (SEM).
關鍵字(中) ★ 虛擬鍺基板
★ III-V族太陽能電池
★ 射頻磁控濺射
★ 迴圈熱退火
關鍵字(英) ★ Virtual Germanium Substrate
★ III-V solar cell
★ RF Magnetron Sputtering
★ Cycle Thermal annealing
論文目次 ABSTRACT I
ACKNOWLEDGEMENT III
Table of Content IV
List of Figures VI
List of Tables VIII
List of Abbreviations IX
CHAPTER 1 - INTRODUCTION 1
1.1. Introduction 1
1.2. Motivations 1
1.3. Purpose and method 2
CHAPTER 2 - PRINCIPLES 5
2.1. Material lattice constant 5
2.1.1. Material characteristics 5
2.1.2. Lattice dislocations 6
2.2. Thin films fabrication 9
2.2.1. Thin film structure 9
2.2.2. Surface properties 9
2.2.3. Deposition 10
2.2.4. Sputtering 10
2.3. Annealing principle 15
CHAPTER 3 - EXPERIMENTS 17
3.1. Experiment step 17
3.2. Device operation 18
3.2.1. Atomic force microscope (AFM) 18
3.2.2. Raman system 20
3.2.3. X-ray diffractometer 23
3.2.4. Annealing System 25
3.2.5. Cluster sputter system 25
3.2.6. Scanning electron microscopy 27
CHAPTER 4 – RESULTS AND DISCUSSION 29
4.1. Annealing temperature 29
4.2. Annealing time 45
4.3. Annealing cycle 57
CHAPTER 5 - CONCLUSION 63
REFERENCE 64
參考文獻 [1] Fleischer, M. (1954). ‘‘The Abundence and Distribution of the Chemical Elements in the Earth′s Crust’’, Journal of Chemistry Education, 31, p. 446.
[2] Liu, J. (2014). ‘‘Monolithically Integrated Ge-on-Si Active Photonics’’. Photonics 2014, 1 (3), pp. 162-197.
[3] Stillman, G. E., Robbins, V. M. & Tabatabaie, N. (1984). ‘‘III-V Compound Semiconductor Devices: Optical Detectors’’, IEEE Transactions on Electron Devices, 31 (11).
[4] Lee, M. L., Leitz, C. W., Cheng, Z., Pitera, A. J., Langdo, T., Currie, M. T., Taraschi, G., Fitzgerald, E. A. & Antoniadis, D. A. (2001). ‘‘Strained Ge channel p-type metal–oxide–semiconductor field-effect transistors grown on Si1-xGex/Si virtual substrates’’, Appl. Phys. Lett., 79 (20), pp. 3344- 3346.
[5] Cooke, M. (2014). ‘‘Pseudo-direct gaps for efficient light emission and absorption’’, Semiconductor Today.
[6] W. J. Varhue, J. M. Carulli, G. G. Peterson, and J. A. Miller. (1991). ‘‘Low temperature epitaxial growth of Ge using electron-cyclotron-resonance plasma-assisted chemical vapor deposition’’. J. Appl. Phys 71, 1949 (1992).
[7] Fama, S., Colace, L., Masini, G., Assanto, G. & Luan, H. C. (2002). ‘‘High performance germanium-onsilicon detectors for optical communications’’, Appl. Phys. Lett., 81 (4), pp. 586-588.
[8] Alharthi, B. S. (2018). Growth and Characterization of Silicon-Germanium-Tin Semiconductors for Future Nanophotonics Devices, ScholarWorks@UARK, scholarworks. Uark.edu/etd/3012/.
[9] Eaglesham, D. J. & Cerullo, M. (1990). ‘‘Dislocation-Free Stranski-Krastanow Growth of Ge on Si(100)’’, Phys. Rev. Lett., 64(16), pp. 1943 – 1950.
[10] Michel, J., Liu, J. & Kimerling, L. C. (2010). ‘‘High-performance Ge-on-Si photodetectors’’, Nat. Photonics 4, 527.
[11] Liu, Z.,Hao, X., Ho-Ballie, A., Tsao, C. Y. & Green, M. A. (2014). ‘‘Cyclic Thermal Annealing on Ge/Si(100) Epitaxial Films Grown by Magnetron Sputtering’’. Thin Solid Films, 574 (2015), pp. 99-102.
[12] Haller, E. E. (2006). ‘‘Germanium: From Its Discovery to SiGe Devices. Department of Materials Science and Engineering, University of California, Berkeley and Materials Sciences Division, Lawrence Berkeley National Laboratory’’, Berkeley, pp. 1-45.
[13] Curtolo, D. C., Friedrich, S. & Friedrich, B. (2017). ‘‘High Purity Germanium, a Review on Principle Theories and Technical Production Methodologies’’. Journal of Crystallization Process and Technology, 7 (4), pp. 65-84.
[14] Kasper, E., Oehme, M., Arguirov, T., Werner, J., Kittler,M. & Schulze, J. (2011). ‘‘Room Temperature Direct Band Gap Emission from Ge p-i-n Heterojunction Photodiodes’’. Advances in OptoElectronics, 2012, pp. 1-4.
[15] Paige, E. G. S. (1960). ‘‘The Drift Mobility of Electrons and Holes in Germanium at Low Temperature’’. Pergamon Press, 16, pp. 207-219.
[16] Sze, S. M. & Kwok, K. Ng. (2006). Physics of Semiconductor Devices, New York, Wiley Interscience.
[17] Dabrowski & Jarek. (2000). Silicon Surface and Formation of Interfaces: Basic Science in the Industrial World, Singapore, River Edge, NJ: World Scientific.
[18] Anderson, P. M., Hirth, J. P. & Lothe, J. (2017). Theory of Dislocations, New York, NY: Cambridge University Press.
[19] Hull, D. & Bacon, D. J. (2011). Introduction to Dislocations, USA, Elsevier Ltd.
[20] Callister, William D. Jr. (2005). Fundamentals of Materials Science and Engineering, John Wiley & Sons, Inc. Danvers, MA.
[21] Reed-Hill, R. E., Abbaschian, L. & Abbaschian, R. (1994). Physical Metallurgy Principles, Boston: PWS Publishing Company.
[22] Shackelford, J. F. (2009). Introduction to Materials Science for Engineers (7th ed), Upper Saddle River, Prentice Hall.
[23] Seshan, K. (2012). Handbook of Thin Film Deposition. William Andrew.
[24] Schmitz, G. J. & Prahl, U. (2017). Handbook of Software Solutions for ICME, Germany, Wiley-VCH.
[25] Abegunde, O. O., Akinlabi, E. T., Oladijo, O. P., Akinlabi, S. & Ude, A. U. (2019). ‘‘Overview of Thin Film Deposition Techniques’’. AIMS Materials Science, 6 (2), pp. 174-199.
[26] Mattox, D. M. (2010). Handbook of Physical Vapor Deposition (PVD) processing, William Andrew.
[27] Mahan, J. E. (2000). Physical vapor deposition of thin films, Wiley-VCH.
[28] Helmersson, U., Lattemann, M., Bohlmark, J., et al. (2006). ‘‘Review Ionized physical vapor deposition (IPVD): A review of technology and applications’’. Thin Solid Films, 513, pp. 1–24.
[29] Seshan, K. (2001). Handbook of thin-film deposition processes and Techniques, Principles, Methods, Equipment and Applications, Noyes Publications/William Andrew Publishing.
[30] Baptista, A., Silva, F., Porteiro, J., Míguez, J. & Pinto, G. (2018). ‘‘Sputtering Physical Vapour Deposition (PVD) Coatings: A Critical Review on Process Improvement and Market Trend Demands’’. Coatings, 8 (402), pp. 1-22.
[31] Simon, A. H. (2012). Handbook of Thin Film Deposition, NY, IBM Microelectronics.
[32] Brauer, G. (2014). ‘‘Magnetron Sputtering’’. Comprehensive Materials Processing, 4, pp. 57-73.
[33] Wei, Q. (2009). Surface Modification of Textiles, England, Oxford: Woodhead Publishing in association with the Textile Institute
[34] Torng, C., Sivertsen, J. M., Judy, J. H., et al. (1990). ‘‘Structure and Bonding Studies of The C: N Thin Films Produced by RF Sputtering Method’’. J Mater Res, 5, pp. 2490–2496.
[35] Kelly, P. J., Arnell, R. D. (2000). ‘‘Magnetron sputtering: a review of recent developments and applications’’. Vacuum, 56, pp. 159–172.
[36] Constantin, D. G., Apreutesei, M., Arvinte, R., et al. (2011). ‘‘Magnetron Sputtering Technique Used for Coatings Deposition; Technologies and Applications’’. RECENT, 12, 1(31),pp. 29-33.
[37] Markovich, D., et al. (1997). ‘‘Effect of Stresses in Annealing a Copper Wire on Its Technological Properties’’. Metal Science and Heat Treatment, 39 (3), pp. 127-129.
[38] Askeland, D. R. & Wendelin, J. W. (2016). The science and engineering of materials. Cengage Learning.
[39] Shackelford, J. F. (2009). Introduction to Materials Science for Engineers. Pearson Prentice Hall.
[40] Dossett, J. L., Boyer, H. E. (2006). Practical heat treating. ASM International. pp. 17-22.
[41] Totten, G. E. (2006). Steel Heat Treatment: Metallurgy and Technologies, New York, CRC Press.
[42] Butt, H. J., Cappella, B. & Kappl, M. (2005). ‘‘Force Measurements with The Atomic Force Microscope: Technique, Interpretation and Applications’’. Surface Science Reports, 59, pp. 1-152.
[43] Kwon, J., Hong, J., Kim, Y. S., Lee, D. Y., Lee, K., Lee, S. M. & Park, S. I. (2003). ‘‘Atomic force microscope with improved scan accuracy, scan speed, and optical vision’’. Review of scientific instrument, 74 (10), pp. 4378-4383.
[44] Kyeyune, B. (2017). Atomic Force Microscopy. Tanzania: African Institute for Mathematical Sciences.
[45] Gross, L., Mohn, F., Moll, N., Liljeroth, P. & Meyer, G. (2009). ‘‘The Chemical Structure of a Molecule Resolved by Atomic Force Microscopy’’. Science, 325 (5944), pp. 1110–1114.
[46] Singh, R. (2002). ‘‘C. V. Raman and the Discovery of the Raman Effect’’. Physics in Perspective, 4, pp. 399-420.
[47] Gardiner, D. J. & Graves, P. R. (1989). Practical Raman Spectroscopy. Berlin: Springer-Verlag.
[48] Schmid, T. & Dariz, P. (2019). ‘‘Raman Microspectroscopic Imaging of Binder Remnants in Historical Mortars Reveals Processing Conditions’’. Heritage, 2 (2), pp. 1662–1683.
[49] Baker, M. J., Hughes, C. S. & Hollywood, K. A. (2016). ‘‘Biophotonics. Vibrational Spectroscopic Diagnostics’’. IOP Science, pp. 1-13.
[50] Sharma, R., Bisen, D. P., Shukla, U. & Sharma, B. G. (2012). ‘‘X-ray Diffraction. A Powerful Method of Characterizing Nanomaterials’’. Recent Research in Science and Technology, 4 (8), pp. 77-79.
[51] Hummel, J. M. (2016). X-ray Diffraction.
[52] Seeck, O. H. & Murphy, B. M. (2014). X-Ray Diffraction. Modern Experimental Techniques. New York: Taylor & Francis.
[53] Lin, T. H. (2015). Near Infrared Crystal Germanium Film Photodetector, Taiwan, National Central University.
[54] Li, Y. T. (2019). The Grown Mechanism of Ge Islands by RF Magnetron Sputtering Systems, Taiwan, National Central University
[55] Stokes, D. J. (2008). Principles and Practice of Variable Pressure Environmental Scanning Electron Microscopy (VP-ESEM). Chichester: John Wiley & Sons.
[56] Goldstein, G. I.; Newbury, D. E., Echlin, P., Joy, D. C., Fiori, C. & Lifshin, E. (1981). Scanning electron microscopy and x-ray microanalysis. New York: Plenum Press.
[57] Zworykin V. A., Hillier J. & Snyder R. L. (1942). ‘‘A scanning electron microscope’’. ASTM Bull , 117, pp. 15–23.
[58] Chen, D., Xue, Z., Wei, X., Wang, G., Ye, L., Zhang, M., Wang, D. & Liu, S. (2014). ‘‘Ultralow temperature ramping rate of LT to HT for the growth of high quality Ge epilayer on Si (100) by RPCVD’’. Appl. Surf. Sci., 299, pp.1-5.
[59] Sharafi, Z. A., Mohyeddine, S., Mohammed, S. O. & Kershi, R. M. (2014). ‘‘Structural and Optical Properties of Germanium Thin Films Prepared by the Vacuum Evaporation Technique’’. Physics Research International, 2014, pp. 1-7.
[60] Zhi, L., Bu-Wen, C., Ya-Ming, L., Chuan-Bo, L., Chun-Lai, X. & Qi-Ming, W. (2013). ‘‘Effects of high temperature rapid thermal annealing on Ge films grown on Si(001) substrate’’. Chin. Phys. B, 22 (11), pp. 1-4.
指導教授 陳昇暉(Chen, Sheng-Hui) 審核日期 2020-1-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明