參考文獻 |
References
1. C.-Y. Chang, H.-T. Lin, M.-S. Lai, T.-Y. Shieh, C.-C. Peng, M.-H. Shih, and Y.-C. Tung, ”Flexible Localized Surface Plasmon Resonance Sensor with Metal–Insulator–Metal Nanodisks on PDMS Substrate,” Scientific Reports 8, 11812 (2018).
2. A. Farnood, M. Ranjbar, and H. Salamati, ”Localized surface plasmon resonance (LSPR) detection of hydrogen gas by Pd2+/Au core/shell like colloidal nanoparticles,” International Journal of Hydrogen Energy (2019).
3. B. Sepúlveda, P. C. Angelomé, L. M. Lechuga, and L. M. Liz-Marzán, ”LSPR-based nanobiosensors,” Nano Today 4, 244-251 (2009).
4. M. Thiele, A. Knauer, D. Malsch, A. Csáki, T. Henkel, J. M. Köhler, and W. Fritzsche, ”Combination of microfluidic high-throughput production and parameter screening for efficient shaping of gold nanocubes using Dean-flow mixing,” Lab on a Chip 17, 1487-1495 (2017).
5. E. A. Coronado, E. R. Encina, and F. D. Stefani, ”Optical properties of metallic nanoparticles: manipulating light, heat and forces at the nanoscale,” Nanoscale 3, 4042-4059 (2011).
6. H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, ”Experimental and Theoretical Studies of Light-to-Heat Conversion and Collective Heating Effects in Metal Nanoparticle Solutions,” Nano Letters 9, 1139-1146 (2009).
7. M. Kim, Y. Suh, and J.-M. Nam, ”Plasmonic Photothermal Nanoparticles for Biomedical Applications,” Advanced Science 6, 1900471 (2019).
8. K. Setoura, Y. Okada, and S. Hashimoto, ”CW-laser-induced morphological changes of a single gold nanoparticle on glass: observation of surface evaporation,” Physical Chemistry Chemical Physics 16, 26938-26945 (2014).
9. G. Baffou, R. Quidant, and F. J. García de Abajo, ”Nanoscale Control of Optical Heating in Complex Plasmonic Systems,” ACS Nano 4, 709-716 (2010).
10. A. O. Govorov and H. H. Richardson, ”Generating heat with metal nanoparticles,” Nano Today 2, 30-38 (2007).
11. L. Wei, J. Lu, H. Xu, A. Patel, Z.-S. Chen, and G. Chen, ”Silver nanoparticles: synthesis, properties, and therapeutic applications,” Drug Discovery Today 20, 595-601 (2015).
12. L. Xie, X. Yan, and Y. Du, ”An aptamer based wall-less LSPR array chip for label-free and high throughput detection of biomolecules,” Biosensors and Bioelectronics 53, 58-64 (2014).
13. J. Li, J. Liu, and C. Chen, ”Remote Control and Modulation of Cellular Events by Plasmonic Gold Nanoparticles: Implications and Opportunities for Biomedical Applications,” ACS Nano 11, 2403-2409 (2017).
14. P. Zijlstra, J. W. M. Chon, and M. Gu, ”White light scattering spectroscopy and electron microscopy of laser induced melting in single gold nanorods,” Physical Chemistry Chemical Physics 11, 5915-5921 (2009).
15. S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, ”Laser-Induced Shape Changes of Colloidal Gold Nanorods Using Femtosecond and Nanosecond Laser Pulses,” The Journal of Physical Chemistry B 104, 6152-6163 (2000).
16. P. Boyer and M. Meunier, ”Modeling Solvent Influence on Growth Mechanism of Nanoparticles (Au, Co) Synthesized by Surfactant Free Laser Processes,” The Journal of Physical Chemistry C 116, 8014-8019 (2012).
17. A. Simo, J. Polte, N. Pfänder, U. Vainio, F. Emmerling, and K. Rademann, ”Formation Mechanism of Silver Nanoparticles Stabilized in Glassy Matrices,” Journal of the American Chemical Society 134, 18824-18833 (2012).
18. L. A. H. Fleming, G. Tang, S. A. Zolotovskaya, and A. Abdolvand, ”Controlled modification of optical and structural properties of glass with embedded silver nanoparticles by nanosecond pulsed laser irradiation,” Opt. Mater. Express 4, 969-975 (2014).
19. W. Han, L. Jiang, X. Li, Q. Wang, S. Wang, J. Hu, and Y. Lu, ”Controllable Plasmonic Nanostructures induced by Dual-wavelength Femtosecond Laser Irradiation,” Scientific Reports 7, 17333 (2017).
20. D. A. Zuev, S. V. Makarov, I. S. Mukhin, V. A. Milichko, S. V. Starikov, I. A. Morozov, I. I. Shishkin, A. E. Krasnok, and P. A. Belov, ”Fabrication of Hybrid Nanostructures via Nanoscale Laser-Induced Reshaping for Advanced Light Manipulation,” Advanced Materials 28, 3087-3093 (2016).
21. A. Podlipensky, Laser assisted modification of optical and structural properties of composite glass with silver nanoparticles (2005).
22. G. Seifert, M. Kaempfe, K. J. Berg, and H. Graener, ”Femtosecond pump-probe investigation of ultrafast silver nanoparticle deformation in a glass matrix,” Applied Physics B 71, 795-800 (2000).
23. A. V. Podlipensky, V. Grebenev, G. Seifert, and H. Graener, ”Ionization and photomodification of Ag nanoparticles in soda-lime glass by 150 fs laser irradiation: a luminescence study,” Journal of Luminescence 109, 135-142 (2004).
24. A. A. Ünal, A. Stalmashonak, G. Seifert, and H. Graener, ”Femtosecond shape transformation dynamics of silver nanoparticles in glass,” Proc SPIE (2008).
25. S. Papernov, ”Laser-induced damage in optical materials,” (2014), pp. 25-73.
26. S. Avanesyan, S. Orlando, S. Langford, and D. Tom, ”Generation of color centers by femtosecond laser pulses in wide-bandgap materials,” Proceedings of SPIE - The International Society for Optical Engineering 5352(2004).
27. A. Stalmashonak, G. Seifert, and H. Graener, ”Optical three-dimensional shape analysis of metallic nanoparticles after laser-induced deformation,” Optics letters 32, 3215-3217 (2007).
28. A. A. Ünal, A. Stalmashonak, G. Seifert, and H. Graener, ”Ultrafast dynamics of silver nanoparticle shape transformation studied by femtosecond pulse-pair irradiation,” Physical Review B 79, 115411 (2009).
29. D. A. Ignat’ev, A. I. Ignat’ev, N. V. Nikonorov, and M. Silvennoinen, ”Interaction of femtosecond laser radiation with silver nanoparticles in photothermorefractive glasses,” J. Opt. Technol. 82, 734-737 (2015).
30. E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, ”Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics,” Physics of Plasmas 9, 949-957 (2002).
31. S. Chin, ”From multiphoton to tunnel ionization,” (2004).
32. S. Maity, L. N. Downen, J. R. Bochinski, and L. I. Clarke, ”Embedded metal nanoparticles as localized heat sources: An alternative processing approach for complex polymeric materials,” Polymer 52, 1674-1685 (2011).
33. V. Semak and M. N. Shneider, ”Invicem Lorentz Oscillator Model (ILOM),” (2017).
34. P. B. Johnson and R. W. Christy, ”Optical Constants of the Noble Metals,” Physical Review B 6, 4370-4379 (1972).
35. L. Benfatto, E. Cappelluti, L. Ortenzi, and L. Boeri, ”Extended Drude model and role of interband transitions in the midinfrared spectra of pnictides,” Physical Review B 83, 224514 (2011).
36. J. Horng, C.-F. Chen, B. Geng, C. Girit, Y. Zhang, Z. Hao, H. A. Bechtel, M. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, ”Drude conductivity of Dirac fermions in graphene,” Physical Review B 83, 165113 (2011).
37. I. Ahmed, E. H. Khoo, O. Kurniawan, and E. P. Li, ”Modeling and simulation of active plasmonics with the FDTD method by using solid state and Lorentz–Drude dispersive model,” J. Opt. Soc. Am. B 28, 352-359 (2011).
38. J. Stoltenberg and D. Pengra, ”Surface Plasmon Resonance in a Thin Metal Film,” (Master’s thesis, 2008).
39. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer Tracts in Modern Physics (1988), Vol. 111.
40. O. Pluchery, R. Vayron, and K.-M. Van, ”Laboratory experiments for exploring the surface plasmon resonance,” European Journal of Physics 32, 585-599 (2011).
41. A. Trügler, Optical Properties of Metallic Nanoparticles - Basic Principles and Simulation (2016), Vol. 232.
42. X.-C. Ma, Y. Dai, L. Yu, and B.-B. Huang, ”Energy transfer in plasmonic photocatalytic composites,” Light: Science & Applications 5, e16017-e16017 (2016).
43. H. Jia, F. Yang, Y. Zhong, and H. Liu, ”Understanding localized surface plasmon resonance with propagative surface plasmon polaritons in optical nanogap antennas,” Photon. Res. 4, 293-305 (2016).
44. C. Noguez, ”Surface Plasmons on Metal Nanoparticles: The Influence of Shape and Physical Environment,” The Journal of Physical Chemistry C 111, 3806-3819 (2007).
45. H. B. Jeon, P. V. Tsalu, and J. W. Ha, ”Shape Effect on the Refractive Index Sensitivity at Localized Surface Plasmon Resonance Inflection Points of Single Gold Nanocubes with Vertices,” Scientific Reports 9, 13635 (2019).
46. M. Shabaninezhad and G. Ramakrishna, ”Theoretical investigation of size, shape, and aspect ratio effect on the LSPR sensitivity of hollow-gold nanoshells,” The Journal of Chemical Physics 150, 144116 (2019).
47. A. Dmitriev, Z. Pirzadeh, T. Pakizeh, V. Miljković, and C. Langhammer, ”Plasmon−Interband Coupling in Nickel Nanoantennas,” ACS Photonics 1, 158 (2014).
48. J. S. Yang, S. G. Lee, S.-G. Park, E.-H. Lee, and O. Beom-Hoan, ”Drude model for the optical properties of a nano-scale thin metal film revisted,” Journal of the Korean Physical Society 55, 2552-2555 (2009).
49. S. Verma and J. Sekhon, ”Influence of aspect ratio and surrounding medium on Localized Surface Plasmon Resonance (LSPR) of gold nanorod,” Journal of Optics DOI 10.1007/s12596-012-0068-y(2012).
50. V. Juvé, M. F. Cardinal, A. Lombardi, A. Crut, P. Maioli, J. Pérez-Juste, L. M. Liz-Marzán, N. Del Fatti, and F. Vallée, ”Size-Dependent Surface Plasmon Resonance Broadening in Nonspherical Nanoparticles: Single Gold Nanorods,” Nano Letters 13, 2234-2240 (2013).
51. S. B. Jones and S. P. Friedman, ”Particle shape effects on the effective permittivity of anisotropic or isotropic media consisting of aligned or randomly oriented ellipsoidal particles,” Water Resources Research 36, 2821-2833 (2000).
52. K. E. Fong and L.-Y. L. Yung, ”Localized surface plasmon resonance: a unique property of plasmonic nanoparticles for nucleic acid detection,” Nanoscale 5, 12043-12071 (2013).
53. C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (John Wiley & Sons, 2008).
54. C. Sönnichsen, ”Plasmons in Metal Nanostructures,” (2001).
55. A. Furube and S. Hashimoto, ”Insight into plasmonic hot-electron transfer and plasmon molecular drive: new dimensions in energy conversion and nanofabrication,” NPG Asia Materials 9, e454-e454 (2017).
56. F. Wooten, ”Chapter 6 - DISPERSION RELATIONS AND SUM RULES,” in Optical Properties of Solids, F. Wooten, ed. (Academic Press, 1972), pp. 173-185.
57. V. Rivera, F. Ferri, and E. Marega Jr, ”Localized surface plasmon resonances: noble metal nanoparticle interaction with rare-earth ions,” in Plasmonics-Principles and Applications (IntechOpen, 2012).
58. C. Noguez and A. L. González, ”Localized Surface Plasmons of Multifaceted Metal Nanoparticles,” Complex‐Shaped Metal Nanoparticles, 361-393 (2012).
59. R. Fuchs and S. H. Liu, ”Sum rule for the polarizability of small particles,” Physical Review B 14, 5521-5522 (1976).
60. R. Fuchs, ”Theory of the optical properties of ionic crystal cubes,” Physical Review B 11, 1732-1740 (1975).
61. G. Seifert, A. Podlipensky, J. Lange, H. Hofmeister, and H. Graener, ”Ultrafast deformation dynamics of silver nanoparticles in glass induced by femtosecond laser pulses - art. no. 61180R,” Proceedings of SPIE - The International Society for Optical Engineering (2006).
62. T. Döppner, S. Teuber, M. Schumacher, J. Tiggesbäumker, and K. H. Meiwes-Broer, ”Charging dynamics of metal clusters in intense laser fields,” Applied Physics B 71, 357-360 (2000).
63. J. Britten, M. Perry, B. Shore, R. Boyd, G. Loomis, and R. Chow, ”Laser-Induced Damage in Optical Materials: 1995,” 511-520 (1996).
64. J. Mater. Chem. C 5, 1569 (2017).
65. R. Annou and V. Tripathi, ”Femtosecond laser pulse induced Coulomb explosion,” 34th EPS Conference on Plasma Physics 2007, EPS 2007 - Europhysics Conference Abstracts 31(2005).
66. Z. Zheng, C. Wu, S. Liu, and X. Yang, ”Analysis of energy occupying ratio of Coulomb explosion and thermal effect in picosecond pulse laser processing,” Optics Communications 424, 190-197 (2018).
67. J. E. Sipe and J. Becher, ”Surface-plasmon-assisted photoemission,” J. Opt. Soc. Am. 71, 1286-1288 (1981).
68. C. Kennerknecht, H. Hövel, M. Merschdorf, S. Voll, and W. Pfeiffer, ”Surface plasmon assisted photoemission from Au nanoparticles on graphite,” Applied Physics B: Lasers and Optics 73, 425-429 (2001).
69. S. Munekuni, T. Yamanaka, Y. Shimogaichi, R. Tohmon, Y. Ohki, K. Nagasawa, and Y. Hama, ”Various types of nonbridging oxygen hole center in high‐purity silica glass,” Journal of Applied Physics 68, 1212-1217 (1990).
70. S. M. Bilankohi, ”Optical scattering and absorption characteristics of silver and silica/silver core/shell nanoparticles,” Oriental Journal of Chemistry 31, 2259-2263 (2015).
71. I. Mayergoyz, Z. Zhang, and G. Miano, ”Analysis of Dynamics of Excitation and Dephasing of Plasmon Resonance Modes in Nanoparticles,” Physical review letters 98, 147401 (2007).
72. U. Hohenester and A. Trügler, ”Interaction of Single Molecules With Metallic Nanoparticles,” Selected Topics in Quantum Electronics, IEEE Journal of 14, 1430-1440 (2009).
73. E. Kapuścik, ”Generalized Helmholtz theorem and gauge invariance of classical field theories,” Lettere al Nuovo Cimento (1971-1985) 42, 263-266 (1985).
74. D. L. Clements, ”Green’s Functions for the Boundary Element Method (Invited contribution),” in Mathematical and Computational Aspects, (Springer Berlin Heidelberg, 1987), 13-20.
75. J. B. Khurgin, ”How to deal with the loss in plasmonics and metamaterials,” Nature Nanotechnology 10, 2-6 (2015).
76. J. Khurgin, ”How to deal with the loss in plasmonics and metamaterials,” Nature nanotechnology 10, 2-6 (2015).
77. J. Khurgin, ”Hot carriers generated by plasmons: where are they are generated and where do they go from there?,” Faraday Discussions (2018).
78. J. B. Khurgin, ”Ultimate limit of field confinement by surface plasmon polaritons,” Faraday Discussions 178, 109-122 (2015).
79. L. V. Besteiro, X.-T. Kong, Z. Wang, G. Hartland, and A. O. Govorov, ”Understanding Hot-Electron Generation and Plasmon Relaxation in Metal Nanocrystals: Quantum and Classical Mechanisms,” ACS Photonics 4, 2759-2781 (2017).
80. G. G. Gu and M. A. Gennert, ”Boundary element methods for solving Poisson equations in computer vision problems,” in Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1991), 546-551.
81. D. Manikandan, S. Mohan, and K. G. M. Nair, ”Absorption and luminescence of silver nanocomposite soda-lime glass formed by Ag+–Na+ ion-exchange,” Materials Research Bulletin 38, 1545-1550 (2003).
82. K. J. Berg, A. Berger, and H. Hofmeister, ”Small silver particles in glass surface layers produced by sodium-silver ion exchange — their concentration and size depth profile,” Zeitschrift für Physik D Atoms, Molecules and Clusters 20, 309-311 (1991).
83. S. Chervinskii, R. Drevinskas, D. V. Karpov, M. Beresna, A. A. Lipovskii, Y. P. Svirko, and P. G. Kazansky, ”Revealing the nanoparticles aspect ratio in the glass-metal nanocomposites irradiated with femtosecond laser,” Scientific Reports 5, 13746 (2015).
84. P. W. Voorhees, ”The theory of Ostwald ripening,” Journal of Statistical Physics 38, 231-252 (1985).
85. A. Heilmann and J. Werner, ”In situ observation of microstructural changes of embedded silver particles,” Thin Solid Films 317, 21-26 (1998).
86. Z. Nie, C.-H. Pai, J. Hua, C. Zhang, Y. Wu, Y. Wan, F. Li, J. Zhang, Z. Cheng, Q. Su, S. Liu, Y. Ma, X. Ning, Y. He, W. Lu, H.-H. Chu, J. Wang, W. B. Mori, and C. Joshi, ”Relativistic single-cycle tunable infrared pulses generated from a tailored plasma density structure,” Nature Photonics 12, 489-494 (2018).
87. D. I. Lee, Y. K. Lee, and H. S. Lee, ”Effects of silver and potassium ions on ion exchange in float glass,” Journal of Materials Science 27, 2908-2913 (1992).
88. V. Kotaidis and A. Plech, ”Cavitation dynamics on the nanoscale,” Applied Physics Letters 87, 213102 (2005).
89. V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech, ”Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” The Journal of Chemical Physics 124, 184702 (2006).
90. J. Hernandez-Rueda, J. Siegel, M. Garcia-Lechuga, and J. Solis, ”Femtosecond laser-induced refractive index changes at the surface of dielectrics: quantification based on Newton ring analysis,” J. Opt. Soc. Am. B 31, 1676-1683 (2014).
91. E. Ohmura, ”Analyses of Self-Focusing Phenomenon and Temperature Rise in Fused Silica by Ultrashort Pulse Laser Irradiation,” Procedia CIRP 5, 7-12 (2013).
92. L. Shah, J. Tawney, M. Richardson, and K. Richardson, ”Self-Focusing During Femtosecond Micromachining of Silicate Glasses,” Quantum Electronics, IEEE Journal of 40, 57-68 (2004).
93. W. Lewandowski, M. Fruhnert, J. Mieczkowski, C. Rockstuhl, and E. Górecka, ”Dynamically self-assembled silver nanoparticles as a thermally tunable metamaterial,” Nature Communications 6, 6590 (2015).
94. Y. Choo, P. W. Majewski, M. Fukuto, C. O. Osuji, and K. G. Yager, ”Pathway-engineering for highly-aligned block copolymer arrays,” Nanoscale 10, 416-427 (2018).
95. X. Zheng, L. Zhu, X. Zeng, L. Meng, L. Zhang, D. Wang, and X. Huang, ”Kinetics-Controlled Amphiphile Self-Assembly Processes,” The Journal of Physical Chemistry Letters 8, 1798-1803 (2017).
96. C. O′Mahony, R. Farrell, T. Goshal, J. Holmes, and M. Morris, ”The Thermodynamics of Defect Formation in Self-Assembled Systems,” (2011).
97. M. Grzelczak, J. Vermant, E. M. Furst, and L. M. Liz-Marzán, ”Directed Self-Assembly of Nanoparticles,” ACS Nano 4, 3591-3605 (2010).
98. A. Böker, J. He, T. Emrick, and T. P. Russell, ”Self-assembly of nanoparticles at interfaces,” Soft Matter 3, 1231-1248 (2007).
99. A. O. Pinchuk, ”Size-Dependent Hamaker Constant for Silver Nanoparticles,” The Journal of Physical Chemistry C 116, 20099-20102 (2012).
100. S. Kralj and D. Makovec, ”Magnetic Assembly of Superparamagnetic Iron Oxide Nanoparticle Clusters into Nanochains and Nanobundles,” ACS Nano 9, 9700-9707 (2015).
101. D. Andrén, N. Odebo Länk, H. Šípová-Jungová, S. Jones, P. Johansson, and M. Käll, ”Surface Interactions of Gold Nanoparticles Optically Trapped against an Interface,” The Journal of Physical Chemistry C 123, 16406-16414 (2019).
102. R. P. R, V. Thomas, J. George, C. Joseph, B. P. R, and U. N. V, ”Structural and plasmonic studies of Ag nanoparticles in silica glass hosts,” IOP Conference Series: Materials Science and Engineering 43, 012005 (2013).
103. M. Strasser, K. Setoura, U. Langbein, and S. Hashimoto, ”Computational Modeling of Pulsed Laser-Induced Heating and Evaporation of Gold Nanoparticles,” The Journal of Physical Chemistry C 118, 25748-25755 (2014). |