博碩士論文 107329007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:3.135.198.49
姓名 劉魏溢(Wei-I Liu)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 碳支撐銅金核殼奈米觸媒於電化學二氧化碳還原反應效能之研究
(The Electrochemical CO2 Reduction Reaction Performance of Carbon-Supported Cu-Au Nanocatalysts with Core/Shell Structures)
相關論文
★ 高效能直接甲醇燃料電池陽極觸媒之製備、改質與鑑定研究★ 金-白金陰極催化劑應用於氧氣還原反應之製備與鑑定:金合金化以及氧化鈰添加之提升效應
★ 利用熱處理改質引發表面偏析現象以增進鉑釕觸媒之甲醇氧化反應活性★ 藉添加鈀鎳與鈀鈷合金觸媒提升氮化鋰的氫化性質
★ 鉑釕觸媒應用於乙醇氧化反應之結構與活性關係研究:錫的添加和氧化處理之提升效應★ 硼氫化鋰脫氫性質之研究:以添加鈀氫氧化鎳觸媒提升其脫氫反應
★ 表面活性劑對硒化鎘及硒化鋅鎘奈米合金在高溫有機金屬製程中的效應★ 鈀銅觸媒應用於鹼性溶液中之乙醇氧化反應其結構與活性關係研究
★ 鈀鈷添加物對於硼氫化鋰及鋰硼氮氫四元化合物脫氫性質之提升效應★ 成長溫度及配位體比例對硒化鋅鎘量子點光學性質的效應
★ 製備、改質及鑑定高效能鈀鈷觸媒應用於陰極氧還原反應★ 金屬(鈰、鈷、錫)氯化物和氧化物的添加對於硼氫化鋰脫氫性質之提升效應
★ 界面活性劑比例及沉澱現象對硒化鎘量子點光學性質的效應★ 雙元鉑基合金奈米顆粒及奈米棒之製備及其應用於氧氣還原反應
★ 錳的添加對於鉑鈷觸媒氧氣還原活性提升效應★ 鈀金鎳觸媒在鹼性乙醇氧化環境下結構與活性的關係
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著工業的進步,二氧化碳排放所造成的問題已經無法再被忽略,如何解決全球暖化及再生能源的研究已經成為當今的熱門議題,而電化學還原二氧化碳反應(carbon dioxide electrochemical reduction reaction, CO2RR)被視為一項關鍵技術,可減少二氧化碳排放經由轉化成高價值化學燃料,然而目前仍舊有許多困難需要克服,像是CO2RR與電解水產氫反應(hydrogen evolution reaction, HER)的競爭關係,CO2RR活性低以及產物選擇性上的控制。目前已經有許多研究致力於研發不同催化材料以改善其選擇性及效能,其中二元金屬奈米觸媒被視為相當有潛力的材料,藉由第二金屬的添加,可以改善其中間產物的化學吸附能,並進一步提升產物的選擇性及活性。
本研究分成兩個部分,第一部分在奈米銅觸媒內添加對於一氧化碳產物具有高選擇性的金屬(例如:金,銀以及鋅)以形成二元奈米觸媒(Cu9Au1/C, Cu9Ag1/C 及 Cu9Zn1/C),在電化學活性上,低添加量第二金屬進入觸媒表面,可降低一氧化碳與觸媒間化學吸附能,進而提升一氧化碳產物的法拉第效率。其中以Cu9Au1/C的修飾效果最好,在-0.8 V下具有69 %的一氧化碳法拉第效率及最低(-0.5 V)的起始電位。
第二部分則是合成不同比例的碳支撐銅金二元觸媒(Cu9Au1/C, Cu8Au2/C及Cu7Au3/C),利用高角度環形暗場相掃描電子顯微鏡 (high angle annular dark-field scanning transmission electron microscopy, HAADF-STEM) 及能量散射光譜儀 (energy dispersive spectrometer, EDS) 證實其為銅核/金殼的結構,根據一氧化碳剝離試驗(CO stripping)及X光電子能譜儀 (X-ray photoelectron spectroscopy, XPS)的結果,隨著表面組成中的金增加,對於一氧化碳中間產物的吸附能隨之下降,而在電催化CO2RR的效能表現上,Cu8Au2/C展現最優異的電化學性能,在-0.8 V下達到94 %的法拉第效率及-439 A/gAu-1的一氧化碳質量活性,甚至達到純金奈米觸媒(Au/C)的2.8倍,本研究揭示了藉由形成銅金核殼奈米觸媒可降低貴金屬的添加並且經由電子修飾效應達到高的一氧化碳選擇性與活性。
摘要(英) With the industrial progress, carbon dioxide emissions cannot be ignored. How to reduce the global warming and develop the renewable energy becomes the hot topic. Electrochemical carbon dioxide reduction reaction (CO2RR) has been seen as the key method to solve the problem, which reduce the CO2 emission and produce value-added chemicals simultaneously. However, the biggest challenges in electrochemical CO2RR are competition between CO2RR and hydrogen evolution reaction (HER), low CO2RR activity and difficult control of products selectivity. Many studies have been dedicated to improve the selectivity of products and enhance the performance for electrochemical CO2RR by different materials. Among them, bimetallic nanocatalysts have attracted a lot of attention, attributed to the binding energy of intermediate changed with the second metal addition, further promoting the selectivity and activity.
This study is divided into two parts. In the first part, the carbon-supported Cu9M1 (M=Au, Ag and Zn) bimetallic catalysts have been prepared. The introduction of metals with high CO selectivity on the surface has demonstrated the good promotion on CO selectivity due to the weakening of the binding energy for intermediates. Cu9Au1/C has shown the highest CO faradaic efficiency (69 % at -0.8 V (vs. RHE)) and the lowest onset potential (-0.5 V (vs. RHE)).
In the second part, CuxAu10-x/C with Cu/Au ratios of 9/1, 8/2, and 7/3 have been prepared. High angle annular dark-field scanning transmission electron microscopy (STEM) and energy dispersive spectrometer (EDS) confirm the formation of Cu core and Au shell structure. According to the CO stripping and X-ray photoelectron spectroscopy (XPS) results, the binding energy of CO is reduced with an increase in the Au content on the surface composition. For the CO2RR, Cu8Au2/C has exhibited the best electrochemical performance both on CO selectivity (CO faradaic efficiency of 94 %) and CO mass activity (-439 A gAu-1) at –0.8 V (vs. RHE) among the various of CuAu/C, which even achieves 2.8 times higher than pure Au/C catalysts. This study reveals that the bimetallic nanocatalysts with core-shell structures like CuAu/C can be used to decrease the noble metals usage and reach high selectivity and activity through electronic modification.
關鍵字(中) ★ 銅金奈米觸媒
★ 二氧化碳電化學還原
★ 法拉第效率
★ 核殼奈米觸媒
★ 質量活性
關鍵字(英) ★ CuAu nanocatalysts (CuAu NCs)
★ CO2 reduction reaction (CO2RR)
★ faradaic efficiency (FE)
★ core-shell nanocatalysts
★ mass activity (MA)
論文目次 摘要 i
Abstract iii
致謝 v
Table of Contents viii
List of Figures xi
List of Tables xv
Chapter 1 Introduction 1
1.1 Mechanism of CO2RR 2
1.2 Catalysts for CO2RR 5
1.3 Bimetallic Electrocatalysts with High CO Selectively 7
1.4 The Preparation of Bimetallic Nanoparticles with Core-Shell Structures 11
1.5 Motivation and Approach 15
Chapter 2 Experimental Section 17
2.1 Preparation of Catalysts 17
2.1.1 Preparation of Cu-M (M = Au, Ag and Zn) catalysts 17
2.1.2 Preparation of Au/C catalysts 17
2.1.3 Preparation of Cu/C catalysts 20
2.1.4 Preparation of CuxAu10-x/C catalysts 20
2.2 Characterization of Catalysts 24
2.2.1 Inductively coupled plasma–optical emission spectroscopy (ICP-OES) 24
2.2.2 X-ray diffraction (XRD) 24
2.2.3 High resolution transmission electron microscopy (HRTEM) 24
2.2.4 High angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) 26
2.2.5 X-ray photoelectron spectroscopy (XPS) 26
2.2.6 X-ray absorption spectroscopy (XAS) 26
2.2.7 Field-emission scanning electron microscope and X-ray energy dispersive spectrometer (SEM-EDS) 28
2.3 CO2RR Performance of Catalysts 29
2.3.1 Carbon dioxide reduction reaction (CO2RR) measurement 29
2.3.2 Gas chromatographic system 31
2.3.3 Standards preparation and calibration 32
2.3.4 CO stripping tests 32
Chapter 3 Results and Discussion 35
3.1 The Structural and Electrochemical Characterizations of Cu-M/C (M = Au, Ag and Zn) 35
3.1.1 EDS and XRD characterizations 35
3.1.2 HRTEM characterizations 35
3.1.3 CO2RR performance 38
3.1.4 Summary 38
3.2 The Structural and Electrochemical Characterizations of CuxAu10-x/C 42
3.2.1 ICP and HRTEM characterizations 42
3.2.2 STEM characterizations 42
3.2.3 XRD characterization 42
3.2.4 XPS characterization 47
3.2.5 XAS characterization 50
3.2.6 CO stripping characterization 55
3.2.7 CO2RR performance of CuxAu10-x/C, Au/C and Cu/C 55
3.2.8 Summary 61
Chapter 4 Conclusions 65
References 66
參考文獻 1. N. Bauer, I. Mouratiadou, G. Luderer, L. Baumstark, R. Brecha, O. Edenhofer and E. Kriegler, Climatic Change, 2016, 136, 69-82
2. K. P. Kuhl, T. Hatsukade, E. R. Cave, D. N. Abram, J. Kibsgaard, and T. F. Jaramillo, J. Am. Chem. Soc., 2014, 136, 14107-14113.
3. B. Kumar, J. P. Brian, V. Atla, S. Kumari, K. A. Bertram, R. T. White and J. M. Spurgeon, Catal. Today, 2016, 270, 19-30.
4. S. Hernández, M. A. Farkhondehfal, F. Sastre, M. Makkee, G. Saracco and N. Russo, Green Chem., 2017, 19, 2326-2346.
5. B. Khezri, A. C. Fisher and M. Pumera, J. Mater Chem. A, 2017, 5, 8230-8246.
6. I. Ganesh, Renew. Sustain. Energy Rev., 2016, 59, 1269-1297.
7. R. Reske, H. Mistry, F. Behafarid, B. Roldan Cuenya and P. Strasser, J. Am. Chem. Soc., 2014, 136, 6978-6986.
8. Y. J. Zhang, V. Sethuraman, R. Michalsky and A. A. Peterson, ACS Catal., 2014, 4, 3742-3748.
9. Y. Hori, Modern Aspects of Electrochemistry, Springer, New York, 2008, 42, 89-189.
10. D. D. Zhu, J. L. Liu and S. Z. Qiao, Adv. Mater., 2016, 28, 3423-3452.
11. J. Schneider, H. Jia, J. T. Muckerman and E. Fujita, Chem. Soc. Rev., 2012, 41, 2036-2051.
12. E. E. Benson, C. P. Kubiak, A. J. Sathrum and J. M. Smieja, Chem. Soc. Rev., 2009, 38, 89-99. 
13. R. Kortlever, J. Shen, K. J. Schouten, F. Calle-Vallejoand and M. T. Koper, J. Phys. Chem. Lett., 2015, 6, 4073–4082.
14. C. Delacourt, P. L. Ridgway, and J. Newman, J Electrochem. Soc., 2010, 157, B1902-B1910.
15. A. A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl and J. K. Norskov, Energy Environ. Sci., 2010, 3, 1311–1315.
16. J. H. Zhou and Y. W. Zhang. React. Chem. Eng., 2018, 3, 591-625
17. Y. Hori; K. Kikuchi and S. Suzuki, Chem. Lett., 1985, 14, 1695−1698.
18. J. P. Jones, G. K. S. Prakash and G. A. Olah, Isr. J. Chem., 2014, 54, 1451-1466.
19. Y. Hori, H. Wakebe, T. Tsukamoto, O. Koga, Electrochim. Acta, 1994, 39, 1833-1839.
20. Y. Chen, C. W. Li and M. W. Kanan, J. Am. Chem. Soc., 2012, 134, 19969–19972.
21. N. Hoshi; M. Kato and Y. Hori, J. Electroanal. Chem., 1997, 440, 283−286.
22. Y. Lu, B. Han, C. Tian, J. Wu, D. Geng and D. Wang, Electro. Commun., 2018, 97, 87–90.
23. K. P. Kuhl, E. R. Cave, D. N. Abram and T. F. Jaramillo, Energy Environ. Sci., 2012, 5, 7050–7059.
24. C. Kim, H. S. Jeon, T. Eom, M.S. Jee, H. Kim, C.M. Friend, B.K. Min and Y. J. Hwang, J. Am. Chem. Soc., 2015, 137 13844–13850.
25. H. S. Jeon, I. Sinev, F. Scholten, N. J. Divins, I. Zegkinoglou, L. Pielsticker and B. R. Cuenya, J. Am. Chem. Soc., 2018, 140, 9383–9386.
26. W. Zhu, R Michalsky, O. Metin, H. Lv, S. Guo, C. J. Wright, X. Sun, A. A. Peterson and S. H. Sun, J. Am. Chem. Soc., 2013, 135, 16833−16836.
27. W. L. Zhu, Y. J. Zhang, H. Y. Zhang, H. F. Lv, Q. Li, R. Michalsky, A. A. Peterson and S. H. Sun, J. Am. Chem. Soc., 2014, 136, 16132−16135.
28. J. Rosen, G.S. Hutchings, Q. Lu, R.V. Forest, A. Moore and F. Jiao, ACS Catal., 2015, 5, 4586–4591.
29. D. H. Won, H. Shin, J. Koh, J. Chung, H. S. Lee, H. Kim and S. I. Woo, Angew. Chem. Int. Ed., 2016, 55, 9297-9300.
30. D. Gao, H. Zhou, J. Wang, S. Miao, F. Yang, G. Wang, J. Wang, and X. Bao, J. Am. Chem. Soc., 2015, 137, 4288-4291.
31. S. Ma, M. Sadakiyo, M. Heima, R. Luo, R. T. Haasch, J. I. Gold, M. Yamauchi and P. J. A. Kenis, J. Am. Chem. Soc., 2017, 139, 47−50.
32. D. Chen, Q. Yao, P. Cui, H. Liu, J. Xie, and J. Yang, ACS Appl. Energy Mater., 2018, 1, 883−890.
33. J. Zhou, D. Lan, S. Yang, Y. Guo, K. Yuan, L. Dai and Y. Zhang, Inorg. Chem. Front., 2018, 5, 1524-1532.
34. K. Sun, T. Cheng, L. Wu, Y. Hu, J. Zhou, A. Maclennan, Z. Jiang, Y. Gao, W. A. Goddard and Z. Wang, J. Am. Chem. Soc., 2017, 139, 15608-15611.
35. J. Zhang, M. Qiao, Y. Li, Q. Shao and X. Huang, ACS Appl. Mater. Interfaces, 2019, 11, 43, 39722-39727. 
36. W. Zhu, L. Zhang, P. Yang, C. Hu, H. Dong, Z. J. Zhao, R. Mu and J. Gong, ACS Energy Lett., 2018, 3, 2144–2149.
37. Z. Chang, S. Huo, W. Zhang, J. Fang and H. Wang, J. Phys. Chem. C, 2017, 121, 11368-11379.
38. K. Liu, M. Ma, L. Wu, M. Valenti, D. Cardenas-Morcoso, J. P. Hofmann, J. Bisquert, S. Gimenez and W. A. Smith, ACS Appl. Mater. Interfaces, 2019, 11, 16546−16555.
39. D. Kim, J. Resasco, Y. Yu, A. M. Asiri and P. Yang, Nat. Commun., 2014, 5, 4948-4955.
40. D. Kim, C. Xie, N. Becknell, Y. Yu, M. Karamad, K. Chan, E. J. Crumlin, J. K. Nørskov and P. Yang, J. Am. Chem. Soc., 2017, 139, 8329-8336.
41. J. Christophe, T. Doneux, C. Buess-Herman, Electrocatalysis. 2012, 3, 139-146.
42. S. Hao and R. Jin, ACS Energy Lett., 2018, 3, 452– 462.
43. N. Hidetomo, I. Shoichiro, O. Yoshiyuki, I. Kazumoto, M. Masunobu and I. Kaname. Chem. Soc. Jpn., 1990, 63, 2459–2462.
44. Y. Yang, L. Jin, B. Liu, P. Kerns and J. He, Electrochim. Acta, 2018, 269, 441–451.
45. W. Yu, M. D. Porosoff and J. G. Chen, Chem. Rev., 2012, 112, 5780-5817.
46. Z. S. Li, C. Y. He, M. Cai, S. Kang and P. K. Shen, Int. J. Hydrogen Energy, 2012, 37 14152–14160.
47. L. Yang, M. B. Vukmirovic, D. Su, K. Sasaki, J. Herron, M. Mavrikakis, S. Liao and R. R. Adzic, J. Phys. Chem. C, 2013, 117,

1748-1753.
48. Z. Niu, F. Cui, Y. Yu, N. Becknell, Y. Sun, G. Khanarian, D. Kim, L. Dou and A. Dehestani, J. Am. Chem. Soc., 2017, 139, 7348−7354.
49. Y. Yang, J. Liu, Z. W. Fu and D. Qin, J. Am. Chem. Soc., 2014, 136, 8153–8156.
50. X. Zhao, S. Chen, Z. Fang, J. Ding, W. Sang, Y. Wang, J. Zhao, Z. Peng and J. Zeng, J. Am. Chem. Soc., 2015, 137, 2804− 2807.
51. Q. Li, J. Fu, W. Zhu, Z. Chen, B. Shen, L. Wu, Z. Xi, T. Wang, G. Lu, J. J. Zhu and S. Sun, J. Am. Chem. Soc., 2017, 139, 4290–4293.
52. W. Zhu, B. M. Tackett, J. G. Chen and F. Jiao, Top Curr. Chem, 2018, 376, 41.
53. L. Xiong, Z. Sun, X. Zhang, L. Zhao, P. Huang, X. Chen, H. Jin, H. Sun, Y. Lian, Z. Deng, M. H. Rümmerli, W. Yin, D. Zhang, S. Wang and Y. Peng, Nat. Commun., 2019, 10, 3782.
54. K. Chen, X. Zhang, T. Williams, L. Bourgeois, D. R. MacFarlane, Electrochim. Acta, 2017, 239, 84-89.
55. . J. H. Kim, H. Woo, S. W. Yun, H. W. Jung, S. Back, Y. Jung and Y. T. Kim, Appl. Catal. B-Environ., 2017, 213, 211-215.
56. W. Tan, B. Cao, W. Xiao, S. Wang, S. Xie, X. Dong, F. Cheng, Q. Guo and P. Liu, Nanoscale Res. Lett., 2019, 14, 63.
57. H. Mistrya, R. Reskec, P. Strasser, and B. Roldan Cuenya, Catalysis Today, 2018, 288, 30−36.
58. W. Zhao, L. Yang, Y. Yin and M. Jin, J. Mater. Chem. A, 2014, 2, 902-906.
59. C. S. Chen, A. D. Handoko, J. H. Wan, L. Ma, D. Ren and B. S. Yeo, Catal. Sci. Technol., 2014, 5, 161-168.
指導教授 王冠文(Kuan-Wen Wang) 審核日期 2020-1-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明