博碩士論文 106226008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:71 、訪客IP:3.133.107.11
姓名 鄭又寧(Yu-Ning Cheng)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 高製程容忍度非偏振性非週期性晶疇極化反轉鈮酸鋰波導電光定向耦合器之研究
(Study of fabrication-tolerant non-polarizing electro-optic directional couplers in aperiodically poled lithium niobate waveguide)
相關論文
★ Continuous-wave narrow-line yellow laser generation in a diode-pumped Nd:YVO4 laser using volume Bragg gratings★ 半導體雷射泵浦內建式Q-調制Nd:MgO:PPLN雷射之研究
★ 主動式多通道窄頻寬通Ti:PPLN波導濾波及模態轉換器之研究★ 以鎂掺雜鈮酸鋰製作二倍頻藍光雷射波導元件之製程研究
★ 非週期性晶格極化反轉鈮酸鋰作為主動式窄頻寬通多波長濾波器及倍頻多波長濾波器★ 非週期性晶格極化反轉鈮酸鋰作為有效率的二倍頻和模態轉換器之研究
★ 積體式週期與非週期極性反轉鈮酸鋰光電與雷射元件★ 退火式質子交換波導PPLN電光調制TM模態轉輻射偏振態之研究
★ 高效率雙Nd:YVO4 雷射和頻黃光產生系統★ 以串級式電光週期性晶格極化反轉鈮酸鋰達成三波長主動式Q-調制Nd:YVO4雷射
★ 以單塊二維週期性晶格極化反轉鈮酸鋰同時作為Nd:YVO4雷射之電光Q調制器和腔內光參量振盪器★ 綠光準相位匹配二倍頻質子交換鎂摻雜鈮酸鋰波導的製程研究
★ 以單晶片串級式週期性準相位匹配波長轉換器與非週期性準相位匹配電光偏振模態轉換器達成主動式調制窄頻輸出光參量振盪器之研究★ 單片非週期性晶疇極化反轉鈮酸鋰同時作為Nd:YVO4雷射Q-調制和腔內光參量產生之研究
★ 準相位匹配二倍頻軟質子交換鎂摻雜鈮酸鋰波導研究★ 以雙體積全像布拉格光柵及二維週期性晶疇極化反轉鈮酸鋰於Nd:YVO4雷射內達成脈衝式窄頻光參量振盪器之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究中我們運用新開發的一種獨特非週期性調整∆β的概念在鈮酸鋰波導上來實現高製程容忍度非偏振性電光定向耦合器。在Z-cut鈦擴散鈮酸鋰波導上利用模擬退火法優化後的非週期性晶疇反轉結構來達到高頻寬(通訊波段中的S-C-L)不分偏振(即對於TE與TM偏振態)的高分光比調控。與傳統週期性結構定向耦合器相比,本技術能夠訂製和實現出高製程容忍度與高工作頻寬的耦合器開關,對於建構積體光子開關網路和積體量子光路具有很大的吸引力。
運用單一晶疇極化反轉結構(非週期晶疇極化反轉結構)來設計出可控制TE和TM偏振光非週期性晶疇極化反轉鈮酸鋰(APPLN)定向耦合器元件的輸出表現。我們通過施加適當的電壓(電光性)在1550 nm波段附近可以達到快速且同時擁有高分光比(設計上分光比99%) TE或TM偏振光耦合器的輸出表現。
我們在長度為50mm,寬度為18mm,厚度為0.5mm的Z-cut鈮酸鋰晶片上製作了多組不同參數的定向耦合器。製程上我們使用標準的黃光微影技術來製作鈦金屬定向耦合器結構,然後使用高溫擴散製程製作出鈦擴散波導定向耦合器,再來利用高電場極化反轉製程製作出非週期性晶疇極化反轉結構,接著將晶片端面經過10o角拋光,之後在定向耦合器的耦合區中將條型鋁電極鍍在波導緩衝層(〖SiO〗_2)上完成元件的製作。
最後我們量測了元件的耦合特性。我們把量測結果加上製程誤差與量測誤差的分析後與模擬結果相擬合。
在未來的工作上,特別是在積體光學元件和量子光子元件中,我們可以通過該技術設計和製作出不同的非週期結構來實現多樣的電光控制光邏輯閘與光開關應用。
摘要(英) In this study, we develop a unique aperiodically alternating- scheme in LiNbO3 waveguides for realizing fabrication-tolerant non-polarizing electro-optic (EO) directional couplers. An optimized aperiodic domain inversion structure in titanium-diffused z-cut LiNbO3 waveguides was calculated by using simulated annealing method to achieve a high power-extinction switching of a wave in a broad telecom (S-C-L) band regardless of its polarization state (i.e., for both TE and TM polarized modes). Compared with conventional directional couplers based on periodic structure, this technology enables that the switching behavior of a coupler can be tailored and realized with high fabrication tolerance and broad working-bandwidth, attractive for building integrated photonic switching networks and on-chip quantum photonic circuits.
The aperiodically poled lithium niobate (APPLN) coupler device is designed to switch both the TE and TM polarized light in a single poling structure (aperiodic domain inversion structure). With the application of appropriate voltages, either TE or TM polarized light in a band around 1550 nm can be fast (electro-optically) switched with high power extinction ratio (99% by design).
We fabricated a set of directional couplers in a single z-cut LiNbO3 chip of 50 mm in length, 18 mm in width, and 0.5 mm in thickness. Mainly, a standard lithographic process was used to produce a titanium directional coupler structure, and then a high temperature diffusion process was used to form the waveguides. The aperiodic domain structure was then produced in the couplers by using the standard electric-field poling technique. The end faces of the chip were then 10o angle polished without applying any optical coating on them. The device fabrication was accomplished after the coating of the stripe electrodes (Al) over the waveguides buffered by an oxide (SiO2) layer in the coupler sections for the voltage application.
Finally, we measured the coupling performance of the fabricated devices. The results have been fit with the simulations, in which the possible fabrication and measurement errors have been analyzed.
In the future, different aperiodic structures can be designed and implemented in this technique to realize versatile electro-optically controlled optical logic gates and optical switches for many applications in especially integrated optical and quantum photonic devices and circuits.
關鍵字(中) ★ 鈮酸鋰
★ 定向耦合器
★ 非偏振性
★ 非週期
★ 電光
關鍵字(英) ★ Lithium Niobate
★ directional couplers
★ non-polarizing
★ aperiodic
★ electro-optic
論文目次 摘要 I
Abstract II
致謝 IV
目錄 V
表目錄 VII
圖目錄 VIII
一、 緒論 1
1-1 積體光學發展簡介 1
1-2 定向耦合器的簡介與發展 1
1-3 研究動機 4
1-4 內容概要 5
二、 實驗原理 6
2-1 定向耦合器 6
2-2 波導總能量隨傳播距離增加而下降 13
2-3 電光效應 15
2-4 電光調制定向耦合器 19
2-5 鈮酸鋰晶體之晶疇極化反轉 24
2-6 模擬退火法 25
三、 晶片設計與模擬結果 28
3-1 增加製程容忍度設計 28
3-2 定向耦合器參數設計 29
3-3 偏振開關設計 31
3-4 目標函數設計 32
3-5 自動化程式設計 35
3-6 模擬結果 37
四、 晶片製程製作 42
4-1 鈦擴散定向耦合器製程 42
4-2 面拋製程 44
4-3 極化反轉製程 45
4-4 緩衝層(SiO2)製程 49
4-5 電極製程 51
4-6 端面拋光製程 53
五、 實驗結果與分析 56
5-1 波導特性量測 56
5-2 增加製程容忍度設計之耦合特性量測 59
5-3 耦合特性量測結果分析 64
5-4 不同波長的耦合特性量測 75
5-5 波導總能量隨電壓增加而下降之分析 86
六、 結論與未來展望 88
6-1 結論 88
6-2 未來展望 88
附錄A : 稜鏡耦合儀(Prism Coupler) 92
參考文獻 102
參考文獻 [1] S. E. Miller, ”Integrated optics: An introduction,” The Bell System Technical Journal, vol. 48, no. 7, pp. 2059-2069, 1969.
[2] E. A. J. Marcatili, ”Dielectric rectangular waveguide and directional coupler for integrated optics,” The Bell System Technical Journal, vol. 48, no. 7, pp. 2071-2102, 1969.
[3] M. Papuchon et al., ”Electrically switched optical directional coupler: Cobra,” vol. 27, no. 5, pp. 289-291, 1975.
[4] R. V. Schmidt and P. S. Cross, ”Efficient optical waveguide switch/amplitude modulator,” Optics Letters, vol. 2, no. 2, pp. 45-47, 1978/02/01 1978.
[5] S. A. Samson, R. F. Tavlykaev, and R. V. Ramaswamy, ”Two-section reversed /spl Delta//spl beta/ switch with uniform electrodes and domain reversal,” IEEE Photonics Technology Letters, vol. 9, no. 2, pp. 197-199, 1997.
[6] 楊松霖, ”以週期性晶疇極化反轉鈦擴散鈮酸鋰波導晶片作為偏振可調定向耦合器之研究,” 碩士, 光電科學與工程學系, 國立中央大學, 桃園縣, 2013.
[7] 簡采毅, ”電光非週期性晶疇極化反轉鈮酸鋰波導定向耦合元件之研究,” 碩士, 光電科學與工程學系, 國立中央大學, 桃園縣, 2014.
[8] 楊詩遠, ”電光非週期性晶疇極化反轉鈮酸鋰定向耦合器,” 碩士, 光電科學與工程學系, 國立中央大學, 桃園縣, 2017.
[9] R. G. Hunsperger, ”Integrated Optics Theory and Technology,” 1982.
[10] Y. Yeh, ”Optical waves in crystals,” 2003.
[11] D. H. Jundt, ”Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Optics Letters, vol. 22, no. 20, pp. 1553-1555, 1997/10/15 1997.
[12] G. J. Edwards and M. Lawrence, ”A temperature-dependent dispersion equation for congruently grown lithium niobate,” Optical and Quantum Electronics, vol. 16, no. 4, pp. 373-375, 1984/07/01 1984.
[13] 呂學璁, ”以非週期性晶疇極化反轉鈮酸鋰晶體作為電光波長調變光參量產生器,” 碩士, 光電科學研究所, 國立中央大學, 桃園縣, 2011.
[14] H. Kogelnik and R. Schmidt, ”Switched directional couplers with alternating ΔΒ,” IEEE Journal of Quantum Electronics, vol. 12, no. 7, pp. 396-401, 1976.
[15] S. Miyazawa, ”Ferroelectric domain inversion in Ti‐diffused LiNbO3 optical waveguide,” vol. 50, no. 7, pp. 4599-4603, 1979.
[16] J. Webjorn, F. Laurell, and G. Arvidsson, ”Blue light generated by frequency doubling of laser diode light in a lithium niobate channel waveguide,” IEEE Photonics Technology Letters, vol. 1, no. 10, pp. 316-318, 1989.
[17] A. C. G. Nutt, V. Gopalan, and M. C. Gupta, ”Domain inversion in LiNbO3 using direct electron‐beam writing,” vol. 60, no. 23, pp. 2828-2830, 1992.
[18] A. Agronin, Y. Rosenwaks, and G. Rosenman, ”Ferroelectric domain reversal in LiNbO3 crystals using high-voltage atomic force microscopy,” vol. 85, no. 3, pp. 452-454, 2004.
[19] D. Feng et al., ”Enhancement of second‐harmonic generation in LiNbO3 crystals with periodic laminar ferroelectric domains,” vol. 37, no. 7, pp. 607-609, 1980.
[20] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, ”Equation of State Calculations by Fast Computing Machines,” vol. 21, no. 6, pp. 1087-1092, 1953.
[21] S. P. B. B. J. T. Morgan, ”The Statistician,” 1995.
[22] B. U. Chen and A. C. Pastor, ”Elimination of Li2O out‐diffusion waveguide in LiNbO3 and LiTaO3,” vol. 30, no. 11, pp. 570-571, 1977.
[23] K. Nakamura, H. Ando, and H. Shimizu, ”Ferroelectric domain inversion caused in LiNbO3 plates by heat treatment,” vol. 50, no. 20, pp. 1413-1414, 1987.
[24] L. L. Buhl, ”Optical losses in metal/SiO<sub>2</sub>-clad Ti:LiNbO<sub>3</sub> waveguides,” Electronics Letters, vol. 19, no. 17, pp. 659-660Available: https://digital-library.theiet.org/content/journals/10.1049/el_19830449
[25] S. Yamada and M. Minakata, ”DC Drift Phenomena in LiNbO3Optical Waveguide Devices,” Japanese Journal of Applied Physics, vol. 20, no. 4, pp. 733-737, 1981/04 1981.
指導教授 陳彥宏(Yen-Hung Chen) 審核日期 2020-3-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明