參考文獻 |
1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015; 136: 359-386.
2. Mahdavifar N, Ghoncheh M, Pakzad R, Momenimovahed Z, Salehiniya H. Epidemiology, incidence and mortality of bladder cancer and their relationship with the development index in the world. Asian Pac J Cancer Prev 2016; 17: 381-386.
3. Jonasch E, Gao J, Rathmell WK. Renal cell carcinoma. BMJ. 2014;349:g4797. Published 2014 Nov 10. doi:10.1136/bmj.g4797
4. Nabi S, Kessler ER, Bernard B, Flaig TW, Lam ET. Renal cell carcinoma: a review of biology and pathophysiology. F1000Res. 2018;7:307. Published 2018 Mar 12. doi:10.12688/f1000research.13179.1
5. Linehan, W. M., & Ricketts, C. J. (2019). The Cancer Genome Atlas of renal cell carcinoma: findings and clinical implications. Nature Reviews Urology.
6. Pili R, Kauffman E, Rodriguez R. Cancer of the kidney. Abeloff’s Clinical Oncology: Fifth Edition: Elsevier Inc. 2013.
7. Minervini, G., Mazzotta, G. M., Masiero, A., Sartori, E., Corrà, S., Potenza, E., Tosatto, S. C. E. (2015). Isoform-specific interactions of the von Hippel-Lindau tumor suppressor protein. Scientific Reports, 5(1).
8. Varshney N, Kebede AA, Owusu-Dapaah H, Lather J, Kaushik M, Bhullar JS. A Review of Von Hippel-Lindau Syndrome. J Kidney Cancer VHL. 2017;4(3):20–29. Published 2017 Aug
9. Gossage, L., & Eisen, T. (2010). Alterations in VHL as potential biomarkers in renal-cell carcinoma. Nature Reviews Clinical Oncology, 7(5), 277–288.
10. Bahar E, Kim H, Yoon H. ER Stress-Mediated Signaling: Action Potential and Ca(2+) as Key Players. Int J Mol Sci. 2016;17(9):1558. Published 2016 Sep 15. doi:10.3390/ijms17091558
11. Graner MW, Lillehei KO, Katsanis E. Endoplasmic reticulum chaperones and their roles in the immunogenicity of cancer vaccines. Front Oncol. 2015;4:379. Published 2015 Jan 6. doi:10.3389/fonc.2014.00379
12. Fu, J., Zhao, L., Wang, L., & Zhu, X. (2015). Expression of markers of endoplasmic reticulum stress-induced apoptosis in the placenta of women with early and late onset severe pre-eclampsia. Taiwanese Journal of Obstetrics and Gynecology, 54(1), 19–23. doi:10.1016/j.tjog.2014.11.00
13. Ashby MC, Tepikin AV. ER calcium and the functions of intracellular organelles. Semin Cell Dev Biol 2001; 12:11-7.
14. Saibil H. Chaperone machines for protein folding, unfolding and disaggregation. Nat Rev Mol Cell Biol. 2013;14(10):630–642. doi:10.1038/nrm3658
15. LeBrasseur, N. (2003). Calcium pumps need a chaperone. The Journal of Cell Biology, 164(1), 7.3–7. doi:10.1083/jcb1641iti5
16. Strehler, E.E.; Treiman, M. Calcium pumps of plasma membrane and cell interior. Curr. Mol. Med. 2004, 4, 323–335.
17. Helen Coe and Marek Michalak, Calcium binding chaperones of the endoplasmic reticulum, Gen. Physiol. Biophys. (2009), Focus Issue, 28, F96–F103
18. Corbett EF, Oikawa K, Francois P, Tessier DC, Kay C, Bergeron JJ, et al. Ca2+ regulation of interactions between endoplasmic reticulum chaperones. J Biol Chem 1999; 274:6203-11.
19. Vidal R, Caballero B, Couve A, Hetz C. Converging pathways in the occurrence of endoplasmic reticulum (ER) stress in Huntington’s disease. Curr Mol Med 2011; 11:1-12.
20. Braakman, I.; Bulleid, N.J. Protein folding and modification in the mammalian endoplasmic reticulum. Annu. Rev. Biochem. 2011, 80, 71–99.
21. Berridge, M.J.; Bootman, M.D.; Roderick, H.L. Calcium signalling: Dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell Biol. 2003, 4, 517–529.
22. Choi, M. J., Park, E. J., Min, K. J., Park, J.-W., & Kwon, T. K. (2011). Endoplasmic reticulum stress mediates withaferin A-induced apoptosis in human renal carcinoma cells. Toxicology in Vitro, 25(3), 692–698. doi:10.1016/j.tiv.2011.01.010
23. Cybulsky AV, Takano T, Papillon J, Khadir A, Liu J, Peng H: Complement C5b-9 membrane attack complex increases expression of endoplasmic reticulum stress proteins in glomerular epithelial cells. J Biol Chem 2002; 277:41342–41351.
24. Cybulsky AV, Takano T, Papillon J, Bijian K: Role of the endoplasmic reticulum unfolded protein response in glomerular epithelial cell injury. J Biol Chem 2005;280:24396– 24403.
25. Inagi R: Endoplasmic Reticulum Stress in the Kidney as a Novel Mediator of Kidney Injury. Nephron Exp Nephrol 2009;112:e1-e9. doi: 10.1159/000210573
26. Zinszner H, Kuroda M, Wang X, Batchvarova N, Lightfoot RT, Remotti H, Stevens JL, Ron D: CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev 1998;12:982–995.
27. Makhov, P., Naito, S., Haifler, M., Kutikov, A., Boumber, Y., Uzzo, R. G., & Kolenko, V. M. (2018). The convergent roles of NF-κB and ER stress in sunitinib-mediated expression of pro-tumorigenic cytokines and refractory phenotype in renal cell carcinoma. Cell Death & Disease, 9(3). doi:10.1038/s41419-018-0388-1.
28. Kuo, C.-Y., Lin, C.-H., & Hsu, T. (2017). VHL Inactivation in Precancerous Kidney Cells Induces an Inflammatory Response via ER Stress–Activated IRE1αSignaling. Cancer Research, 77(13), 3406–3416. doi:10.1158/0008-5472.can-16-3196.
29. Mak DO, Foskett JK. Inositol 1,4,5-trisphosphate receptors in the endoplasmic reticulum: A single-channel point of view. Cell Calcium. 2015;58(1):67–78. doi:10.1016/j.ceca.2014.12.008
30. Bezprozvanny I. The inositol 1,4,5-trisphosphate receptors. Cell Calcium 38(3-4): 261-272,2005.
31. Foskett JK, White C, Cheung KH, Mak DO. Inositol trisphosphate receptor Ca2+ release channels. Physiol Rev. 2007;87(2):593–658. doi:10.1152/physrev.00035.2006
32. Chandrasekhar, Rahul, Yule, David I. and Wang,Liwei. (2017). Inositol 1,4,5-trisphosphate receptors (InsP3R). Pancreapedia: Exocrine Pancreas Knowledge Base, DOI: 10.3998/panc.2017.07
33. Bosanac, I., Alattia, J.-R., Mal, T. K., Chan, J., Talarico, S., Tong, F. K., … Ikura, M. (2002). Structure of the inositol 1,4,5-trisphosphate receptor binding core in complex with its ligand. Nature, 420(6916), 696–700. doi:10.1038/nature01268
34. Yule DI, Betzenhauser MJ, Joseph SK. Linking structure to function: Recent lessons from inositol 1,4,5-trisphosphate receptor mutagenesis. Cell Calcium. 2010;47(6):469–79.
35. Fan G, et al. Gating machinery of InsP3R channels revealed by electron cryomicroscopy. Nature. 2015;527(7578):336–41.
36. Matsumoto M, et al. Ataxia and epileptic seizures in mice lacking type 1 inositol 1,4,5-trisphosphate receptor. Nature. 1996;379(6561):168–71.
37. Wojcikiewicz RJ. Type I, II, and III inositol 1,4,5-trisphosphate receptors are unequally susceptible to down-regulation and are expressed in markedly different proportions in different cell types. J Biol Chem. 1995;270(19):11678–83.
38. Garcia MI, Boehning D. Cardiac inositol 1,4,5-trisphosphate receptors. Biochim Biophys Acta Mol Cell Res. 2017;1864(6):907–914. doi:10.1016/j.bbamcr.2016.11.017
39. Beroukhim, R., Brunet, J.-P., Di Napoli, A., Mertz, K. D., Seeley, A., Pires, M. M., … Signoretti, S. (2009). Patterns of Gene Expression and Copy-Number Alterations in von-Hippel Lindau Disease-Associated and Sporadic Clear Cell Carcinoma of the Kidney. Cancer Research, 69(11), 4674–4681. doi:10.1158/0008-5472.can-09-0146.
40. Wu, X., Scelo, G., Purdue, M. P., Rothman, N., Johansson, M., Ye, Y., Wood, C. G. (2011). A genome-wide association study identifies a novel susceptibility locus for renal cell carcinoma on 12p11.23. Human Molecular Genetics, 21(2), 456–462. doi:10.1093/hmg/ddr479
41. Moore, L. E., Jaeger, E., Nickerson, M. L., Brennan, P., De Vries, S., Roy, R., … Waldman, F. M. (2012). Genomic copy number alterations in clear cell renal carcinoma: associations with case characteristics and mechanisms of VHL gene inactivation. Oncogenesis, 1(6), e14–e14. doi:10.1038/oncsis.2012.14
42. Dalgin G.S., Holloway D.T., Liou L.S., DeLisi C. Identification and characterization of renal cell carcinoma gene markers. Cancer Inform. 2007;3:65–92
43. THE HUMAN PROTEIN ATLAS
https://www.proteinatlas.org/ENSG00000123104-ITPR2/pathology/renal+cancer
44. Ondrias K., Sirova M., Kubovcakova L., Krizanova O. Uranyl acetate modulates gene expression and protein levels of the type 2, but not type 1 inositol 1,4,5-trisphosphate receptors in mouse kidney. Gen. Physiol. Biophys. 2008;27:187–193.
45. Ondrias K., Sirova M., Kubovcakova L., Krizanova O. Uranyl acetate modulates gene expression and protein levels of the type 2, but not type 1 inositol 1,4,5-trisphosphate receptors in mouse kidney. Gen. Physiol. Biophys. 2008;27:187–193.
46. Ondrias K., Sirova M., Kubovcakova L., Krizanova O. Uranyl acetate modulates gene expression and protein levels of the type 2, but not type 1 inositol 1,4,5-trisphosphate receptors in mouse kidney. Gen. Physiol. Biophys. 2008;27:187–193.
47. Tohmonda T, Yoda M, Iwawaki T, et al. IRE1α/XBP1-mediated branch of the unfolded protein response regulates osteoclastogenesis. J Clin Invest. 2015;125(8):3269–3279. doi:10.1172/JCI76765
48. Cairns P. Renal cell carcinoma. Cancer Biomark. 2010;9(1-6):461–473. doi:10.3233/CBM-2011-0176
49. Drucker, B. J. (2005). Renal cell carcinoma: Current status and future prospects. Cancer Treatment Reviews, 31(7), 536–545. doi:10.1016/j.ctrv.2005.07.009
50. Network, C.G.A.R., Comprehensive molecular characterization of clear cell renal cell
carcinoma. Nature, 2013. 499(7456): p. 43.
51. Peña-Llopis, S., et al., BAP1 loss defines a new class of renal cell carcinoma. Nature
genetics, 2012. 44(7): p. 751.
52. Ricketts, C.J., et al., Genome-wide CpG island methylation analysis implicates novel
genes in the pathogenesis of renal cell carcinoma. Epigenetics, 2012. 7(3): p. 278-290.
53. Garg, A. D., Kaczmarek, A., Krysko, O., Vandenabeele, P., Krysko, D. V., & Agostinis, P. (2012). ER stress-induced inflammation: does it aid or impede disease progression? Trends in Molecular Medicine, 18(10), 589–598. doi:10.1016/j.molmed.2012.06.010.
54. Bonizzi, G. and Karin, M. (2004) The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol. 25, 280–288.
55. Angel, P. et al. (2001) Function and regulation of AP-1 subunits in skin
physiology and pathology. Oncogene 20, 2413–2423.
56. Hu, P. et al. (2006) Autocrine tumor necrosis factor alpha links endoplasmic reticulum stress to the membrane death receptor pathway through IRE1alpha-mediated NF-kappaB activation and down-regulation of TRAF2 expression. Mol. Cell. Biol. 26, 3071–3084.
57. Kaneko, M. et al. (2003) Activation signal of nuclear factor-kappa B in response to endoplasmic reticulum stress is transduced via IRE1 and tumor necrosis factor receptor-associated factor 2. Biol. Pharm. Bull. 26, 931–935.
58. Ghosh R, Lipson KL, Sargent KE, Mercurio AM, Hunt JS, Ron D, Urano F. Transcriptional regulation of VEGF-A by the unfolded protein response pathway. PloS one. 2010; 5:e9575. [PubMed: 20221394].
59. Auf G, Jabouille A, Guerit S, Pineau R, Delugin M, Bouchecareilh M, Magnin N, Favereaux A, Maitre M, Gaiser T, et al. Inositol-requiring enzyme 1alpha is a key regulator of angiogenesis and invasion in malignant glioma. Proc Natl Acad Sci U S A. 2010; 107:15553–15558. [PubMed: 20702765].
60. Bettigole SE, Glimcher LH. Endoplasmic reticulum stress in immunity. Annu Rev Immunol. 2015; 33:107–138. [PubMed: 25493331]
61. Hu R, Chen ZF, Yan J, Li QF, Huang Y, Xu H, Zhang XP, Jiang H. Endoplasmic Reticulum Stress of Neutrophils Is Required for Ischemia/Reperfusion-Induced Acute Lung Injury. J Immunol. 2015; 195:4802–4809. [PubMed: 26475925].
62. Banerjee A, Lang JY, Hung MC, Sengupta K, Banerjee SK, Baksi K, Banerjee DK. Unfolded protein response is required in nu/nu mice microvasculature for treating breast tumor with tunicamycin. J Biol Chem. 2011;286:29127–29138.
63. Dibdiakova, K., Saksonova, S., Pilchova, I., Klacanova, K., Tatarkova, Z., & Racay, P. (2018). Both thapsigargin- and tunicamycin-induced endoplasmic reticulum stress increases expression of Hrd1 in IRE1-dependent fashion. Neurological Research, 1–12. doi:10.1080/01616412.2018.1547856.
64. Liu, Ting et al. “NF-κB signaling in inflammation.” Signal transduction and targeted therapy vol. 2 (2017): 17023–. doi:10.1038/sigtrans.2017.23
65. Murphy KM. Janeway’s Immunobiology, 8th edn. Garland, 2010
66. Wang N, Liang H, Zen K. Molecular mechanisms that influence the macrophage m1-m2 polarization balance. Front Immunol 2014; 5: 614.
67. Mosser DM. The many faces of macrophage activation. J Leukoc Biol 2003; 73: 209–212.
68. Varghese E, Samuel SM, Sadiq Z, et al. Anti-Cancer Agents in Proliferation and Cell Death: The Calcium Connection. Int J Mol Sci. 2019;20(12):3017. Published 2019 Jun 20. doi:10.3390/ijms20123017.
69. Chen, Y., Chen, Y., Chiu, W. et al. Remodeling of calcium signaling in tumor progression. J Biomed Sci 20, 23 (2013) doi:10.1186/1423-0127-20-23.
70. Flamment, M., Hajduch, E., Ferré, P., & Foufelle, F. (2012). New insights into ER stress-induced insulin resistance. Trends in Endocrinology & Metabolism, 23(8), 381–390. doi:10.1016/j.tem.2012.06.003.
71. Torres M, Encina G, Soto C, Hetz C. Abnormal calcium homeostasis and protein folding stress at the ER: A common factor in familial and infectious prion disorders. Commun Integr Biol. 2011;4(3):258–261. doi:10.4161/cib.4.3.15019.
72. Foskett, J. K., White, C., Cheung, K.-H., & Mak, D.-O. D. (2007). Inositol Trisphosphate Receptor Ca2+ Release Channels. Physiological Reviews, 87(2), 593–658. doi:10.1152/physrev.00035.2006.
73. Chandrasekhar,Rahul, Yule,David I. and Wang,Liwei. (2017). Inositol 1,4,5-trisphosphate receptors (InsP3R). Pancreapedia: Exocrine Pancreas Knowledge Base, DOI: 10.3998/panc.2017.07.
74. Kania, E., Pająk, B., & Orzechowski, A. (2015). Calcium Homeostasis and ER Stress in Control of Autophagy in Cancer Cells. BioMed Research International, 2015, 1–12. doi:10.1155/2015/352794.
75. Cubillos-Ruiz, J. R., Bettigole, S. E., & Glimcher, L. H. (2017). Tumorigenic and Immunosuppressive Effects of Endoplasmic Reticulum Stress in Cancer. Cell, 168(4), 692–706. doi:10.1016/j.cell.2016.12.004.
|