博碩士論文 106826601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:3.145.38.150
姓名 黎怀北(Hoai-Bac Le)  查詢紙本館藏   畢業系所 系統生物與生物資訊研究所
論文名稱
(ITPR2, an ER calcium channel, regulates ER stress and inflammatory response in pre-cancerous kidney tubule cells)
相關論文
★ 由基因微陣列分析發炎與腎臟細胞癌發生之機制★ VHL基因突變在癌前期的組織發炎機制
★ VHL剔除模型之轉錄體差異以及台灣透明細胞腎細胞癌族群之特定基因體變異之研究★ VHL knockdown HK-2 cells induce macrophage endothelial extravasation
★ 透明腎臟細胞癌發生前期與組織發炎之關係研究★ VHL與KIM-1的功能關係研究
★ 血管內皮細胞在腫瘤微環境中促進透明腎細胞癌形成之研究★ Study of the Interaction between VHL/Vhlh Deficient Kidney Epithelial Cells and Macrophages—Relevance to the Development of Clear-Cell Renal Cell Carcinoma
★ 應用大腸桿菌與酵母菌蛋白質體晶片系統性分析抗菌肽及抗生素作用之目標蛋白質★ Analysis of Gene Expression of Chronic Obstructive Pulmonary Disease and Chronic Kidney Disease to Illuminate Chronic Inflammation Associated with Tumor Microenvironment and Potential Treatment
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 腎細胞癌 (Renal cell carcinoma, RCC) 是全球16大致死癌症之一。儘管腎細胞的診斷和偵測日益增強, RCC 仍是最致命的泌尿癌症之一。透明腎細胞癌 (Clear cell renal cell carcinoma, ccRCC)在所有RCC亞型中引起死亡人数最多。此外,超過 70% 的 ccRCC病人跟腫瘤抑制基因-VHL 的基因組或表觀基因的突變有關。在我們先前的研究中發現內質網 (Endoplasmic reticulum, ER)應激透過 IRE1α傳導訊號引起的發炎反應是透明細胞癌的發展中扮演重要調控因素之一。更有趣的是, DeLiSi研究團隊在2007年發現,與鄰近正常腎臟組織作相比,第二類別肌醇1,4,5-三磷酸受體 (Inositol 1,4,5-trisphosphate receptor, type 2, ITPR-2) 在RCC中有下調的表現。另一方面, 獨立全基因組關聯研究和其他最近的研究指出位於染色體12p11.23的 ITPR-2在ccRCC是一個敏感的位點,尤其12p區域是在VHL相關的 RCC病人中被發現會被放大。這些研究結果說明ITPR-2會透某一種機制在ccRCC的不同階段中會有不同的影響。因此我們提出一個假說,改變ITPR-2、內質網的膜蛋白,同時也是細胞內鈣釋放通道的第二傳到訊號、可以影響到內質網應激的反應,並且改變發炎反應及ccRCC的發展。在這份研究中,我們在近端腎小管上皮細胞 (HK-2) 有或沒有抑制VHL 表現細胞株中進行抑制 ITPR-2表現,然後利用鈣離子流動以監測 ITPR-2活性來研究 ITPR-2 在內質網應激和發炎中的功能。我們的結果表明抑制 ITPR-2的表現可以降低內質網應激的負擔及內質網應激引起的發炎反應。另外在巨噬細胞的外滲試驗(Extravasation assay)中,與單獨抑制VHL表現量對比,同時抑制ITPR-2和VHL表現量會降低巨噬細胞募集。綜合起來,這份研究在ccRCC發展提供新一中幾轉和潛在的新目標治療。
摘要(英) Renal cell carcinoma (RCC) is the 16th most common cause of cancer death worldwide. Although the diagnosis and observation for RCC has been improved, RCC still remains one of the most lethal urologic cancers. Among several subtypes of RCC, clear cell renal cell carcinoma (ccRCC) accounts for the most cancer-related deaths. Moreover, more than 70% of the ccRCC cases contain genomic and epigenetic defects in the VHL tumor suppressor gene. In the previous study, we reported that endoplasmic reticulum (ER) stress is one of the key regulators of VHL mutant ccRCC progression by inducing inflammatory responses via IRE1α signaling. Interestingly, DeLisi and his colleagues in 2007 revealed that inositol 1,4,5-triphosphate receptor type 2 (ITPR2) was declined in RCC tumors compared with normal kidney tissues. Nevertheless, results from independent genome-wide association study in 2011 and other recent studies pinpointed that the region 12p11.23, which contains ITPR2 gene is a susceptibility locus for ccRCC. Specifically, the 12p region was amplified among 14 regions of nonrandom copy-number change in VHL-related RCC. These outcomes indicate that ITPR2 somehow affects the ccRCC progression with various influences in different stages. That leads us to the hypothesis that the alteration of ITPR2—an ER membrane protein and a second messenger intracellular calcium release channel—could impact on the ER stress response, which in turn influences inflammation and ccRCC development. Here, we generated ITPR2 knockdown in proximal tubule epithelial cell line (HK-2) with or without VHL knockdown and used calcium flow as the reporter for ITPR2 activation to investigate the role of this gene in ER stress and inflammation. Our results showed that loss of ITPR2 expression reduces the ER stress burden and ER stress-induced inflammation. Besides, we also found that double knockdown ITPR2 and VHL in HK-2 diminishes macrophages recruitment compared with VHL single knockdown HK-2 in in vitro extravasation assay. Taken together, these findings provide the new mechanism of ccRCC development and identify a potential new target therapy for ccRCC or kidney cancer in general.
關鍵字(中) ★ ITPR2
★ ccRCC
★ inflammation
★ ER stress
關鍵字(英) ★ ITPR2
★ ccRCC
★ inflammation
★ ER stress
論文目次 摘要 i
Abstract ii
Acknowledgement iii
List of contents iv
List of figures vi
List of tables vii
CHAPTER 1: INTRODUCTION 1
1-1. Renal cell carcinoma (RCC) 1
1-2. ccRCC and VHL deficiency. 1
1-3. Endoplasmic reticulum stress (ER stress) drives RCC 3
1-3-1. Endoplasmic reticulum stress (ER stress) 3
1-3-2. Ca2+ in ER Stress 4
1-3-3. ER stress and kidney disease 5
1-3-4. IRE1α-XBP1 signaling promotes inflammation and tumorigenesis 6
1-4. ITPR2 expression in RCC 9
1-4-1. ITPR2 overview 9
1-4-2. ITPR2 expression level in RCC 10
1-4-3. ITPR2’s role in ER stress 11
CHAPTER 2: MATERIAL AND METHOD 13
2-1. Cell culture 13
2-2. Vectors and gene transfer. 13
2-3. Double knockdown ITPR2 and VHL stable cell line generation 15
2-3-1. Construct shITPR2 plasmid with TRC vector containing Blasticidin resistant gene 15
2-3-2. Transfect shITPR2 plasmid into VHL loss-of-function stable cell line 15
2-4. Reverse transcription and real-time quantitative Polymerase chain reaction (qPCR. 15
2-5. Western blot analysis 16
2-6. Intracellular calcium measurement. 17
2-6-1. Staining cells 17
2-6-2. Measure calcium flux by flow cytometry 18
2-7. Macrophage recruitment assay 18
2-7-1. Co-culture by transwell system 18
2-7-2. Crystal violet staining 18
2-8. Paraffin immunohistochemistry and histological staining 20
2-9. Statistical Analysis 20
CHAPTER 3: RESULTS 21
3-1. Single knockdown ITPR2 and double knockdown VHL and ITPR2 HK-2 were established as experiments material 21
3-2. VHL deletion increases ITPR2 expression 23
3-3. Knockdown ITPR2 rescues ER stress 25
3-4. Measurement of intracellular Ca2+ concentration as an ITPR2 activation reporter 29
3-5. Lack of ITPR2 reduces inflammation via p-IRE1α-regulated cytokines production 31
3-6. ITPR2 ablation reduces macrophage recruitment 34
CHAPTER 4: DISCUSSION AND CONCLUSION 37
Reference 44
參考文獻 1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015; 136: 359-386.
2. Mahdavifar N, Ghoncheh M, Pakzad R, Momenimovahed Z, Salehiniya H. Epidemiology, incidence and mortality of bladder cancer and their relationship with the development index in the world. Asian Pac J Cancer Prev 2016; 17: 381-386.
3. Jonasch E, Gao J, Rathmell WK. Renal cell carcinoma. BMJ. 2014;349:g4797. Published 2014 Nov 10. doi:10.1136/bmj.g4797
4. Nabi S, Kessler ER, Bernard B, Flaig TW, Lam ET. Renal cell carcinoma: a review of biology and pathophysiology. F1000Res. 2018;7:307. Published 2018 Mar 12. doi:10.12688/f1000research.13179.1
5. Linehan, W. M., & Ricketts, C. J. (2019). The Cancer Genome Atlas of renal cell carcinoma: findings and clinical implications. Nature Reviews Urology.
6. Pili R, Kauffman E, Rodriguez R. Cancer of the kidney. Abeloff’s Clinical Oncology: Fifth Edition: Elsevier Inc. 2013.
7. Minervini, G., Mazzotta, G. M., Masiero, A., Sartori, E., Corrà, S., Potenza, E., Tosatto, S. C. E. (2015). Isoform-specific interactions of the von Hippel-Lindau tumor suppressor protein. Scientific Reports, 5(1).
8. Varshney N, Kebede AA, Owusu-Dapaah H, Lather J, Kaushik M, Bhullar JS. A Review of Von Hippel-Lindau Syndrome. J Kidney Cancer VHL. 2017;4(3):20–29. Published 2017 Aug
9. Gossage, L., & Eisen, T. (2010). Alterations in VHL as potential biomarkers in renal-cell carcinoma. Nature Reviews Clinical Oncology, 7(5), 277–288.
10. Bahar E, Kim H, Yoon H. ER Stress-Mediated Signaling: Action Potential and Ca(2+) as Key Players. Int J Mol Sci. 2016;17(9):1558. Published 2016 Sep 15. doi:10.3390/ijms17091558
11. Graner MW, Lillehei KO, Katsanis E. Endoplasmic reticulum chaperones and their roles in the immunogenicity of cancer vaccines. Front Oncol. 2015;4:379. Published 2015 Jan 6. doi:10.3389/fonc.2014.00379
12. Fu, J., Zhao, L., Wang, L., & Zhu, X. (2015). Expression of markers of endoplasmic reticulum stress-induced apoptosis in the placenta of women with early and late onset severe pre-eclampsia. Taiwanese Journal of Obstetrics and Gynecology, 54(1), 19–23. doi:10.1016/j.tjog.2014.11.00
13. Ashby MC, Tepikin AV. ER calcium and the functions of intracellular organelles. Semin Cell Dev Biol 2001; 12:11-7.
14. Saibil H. Chaperone machines for protein folding, unfolding and disaggregation. Nat Rev Mol Cell Biol. 2013;14(10):630–642. doi:10.1038/nrm3658
15. LeBrasseur, N. (2003). Calcium pumps need a chaperone. The Journal of Cell Biology, 164(1), 7.3–7. doi:10.1083/jcb1641iti5
16. Strehler, E.E.; Treiman, M. Calcium pumps of plasma membrane and cell interior. Curr. Mol. Med. 2004, 4, 323–335.
17. Helen Coe and Marek Michalak, Calcium binding chaperones of the endoplasmic reticulum, Gen. Physiol. Biophys. (2009), Focus Issue, 28, F96–F103
18. Corbett EF, Oikawa K, Francois P, Tessier DC, Kay C, Bergeron JJ, et al. Ca2+ regulation of interactions between endoplasmic reticulum chaperones. J Biol Chem 1999; 274:6203-11.
19. Vidal R, Caballero B, Couve A, Hetz C. Converging pathways in the occurrence of endoplasmic reticulum (ER) stress in Huntington’s disease. Curr Mol Med 2011; 11:1-12.
20. Braakman, I.; Bulleid, N.J. Protein folding and modification in the mammalian endoplasmic reticulum. Annu. Rev. Biochem. 2011, 80, 71–99.
21. Berridge, M.J.; Bootman, M.D.; Roderick, H.L. Calcium signalling: Dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell Biol. 2003, 4, 517–529.
22. Choi, M. J., Park, E. J., Min, K. J., Park, J.-W., & Kwon, T. K. (2011). Endoplasmic reticulum stress mediates withaferin A-induced apoptosis in human renal carcinoma cells. Toxicology in Vitro, 25(3), 692–698. doi:10.1016/j.tiv.2011.01.010
23. Cybulsky AV, Takano T, Papillon J, Khadir A, Liu J, Peng H: Complement C5b-9 membrane attack complex increases expression of endoplasmic reticulum stress proteins in glomerular epithelial cells. J Biol Chem 2002; 277:41342–41351.
24. Cybulsky AV, Takano T, Papillon J, Bijian K: Role of the endoplasmic reticulum unfolded protein response in glomerular epithelial cell injury. J Biol Chem 2005;280:24396– 24403.
25. Inagi R: Endoplasmic Reticulum Stress in the Kidney as a Novel Mediator of Kidney Injury. Nephron Exp Nephrol 2009;112:e1-e9. doi: 10.1159/000210573
26. Zinszner H, Kuroda M, Wang X, Batchvarova N, Lightfoot RT, Remotti H, Stevens JL, Ron D: CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev 1998;12:982–995.
27. Makhov, P., Naito, S., Haifler, M., Kutikov, A., Boumber, Y., Uzzo, R. G., & Kolenko, V. M. (2018). The convergent roles of NF-κB and ER stress in sunitinib-mediated expression of pro-tumorigenic cytokines and refractory phenotype in renal cell carcinoma. Cell Death & Disease, 9(3). doi:10.1038/s41419-018-0388-1.
28. Kuo, C.-Y., Lin, C.-H., & Hsu, T. (2017). VHL Inactivation in Precancerous Kidney Cells Induces an Inflammatory Response via ER Stress–Activated IRE1αSignaling. Cancer Research, 77(13), 3406–3416. doi:10.1158/0008-5472.can-16-3196.
29. Mak DO, Foskett JK. Inositol 1,4,5-trisphosphate receptors in the endoplasmic reticulum: A single-channel point of view. Cell Calcium. 2015;58(1):67–78. doi:10.1016/j.ceca.2014.12.008
30. Bezprozvanny I. The inositol 1,4,5-trisphosphate receptors. Cell Calcium 38(3-4): 261-272,2005.
31. Foskett JK, White C, Cheung KH, Mak DO. Inositol trisphosphate receptor Ca2+ release channels. Physiol Rev. 2007;87(2):593–658. doi:10.1152/physrev.00035.2006
32. Chandrasekhar, Rahul, Yule, David I. and Wang,Liwei. (2017). Inositol 1,4,5-trisphosphate receptors (InsP3R). Pancreapedia: Exocrine Pancreas Knowledge Base, DOI: 10.3998/panc.2017.07
33. Bosanac, I., Alattia, J.-R., Mal, T. K., Chan, J., Talarico, S., Tong, F. K., … Ikura, M. (2002). Structure of the inositol 1,4,5-trisphosphate receptor binding core in complex with its ligand. Nature, 420(6916), 696–700. doi:10.1038/nature01268
34. Yule DI, Betzenhauser MJ, Joseph SK. Linking structure to function: Recent lessons from inositol 1,4,5-trisphosphate receptor mutagenesis. Cell Calcium. 2010;47(6):469–79.
35. Fan G, et al. Gating machinery of InsP3R channels revealed by electron cryomicroscopy. Nature. 2015;527(7578):336–41.
36. Matsumoto M, et al. Ataxia and epileptic seizures in mice lacking type 1 inositol 1,4,5-trisphosphate receptor. Nature. 1996;379(6561):168–71.
37. Wojcikiewicz RJ. Type I, II, and III inositol 1,4,5-trisphosphate receptors are unequally susceptible to down-regulation and are expressed in markedly different proportions in different cell types. J Biol Chem. 1995;270(19):11678–83.
38. Garcia MI, Boehning D. Cardiac inositol 1,4,5-trisphosphate receptors. Biochim Biophys Acta Mol Cell Res. 2017;1864(6):907–914. doi:10.1016/j.bbamcr.2016.11.017
39. Beroukhim, R., Brunet, J.-P., Di Napoli, A., Mertz, K. D., Seeley, A., Pires, M. M., … Signoretti, S. (2009). Patterns of Gene Expression and Copy-Number Alterations in von-Hippel Lindau Disease-Associated and Sporadic Clear Cell Carcinoma of the Kidney. Cancer Research, 69(11), 4674–4681. doi:10.1158/0008-5472.can-09-0146.
40. Wu, X., Scelo, G., Purdue, M. P., Rothman, N., Johansson, M., Ye, Y., Wood, C. G. (2011). A genome-wide association study identifies a novel susceptibility locus for renal cell carcinoma on 12p11.23. Human Molecular Genetics, 21(2), 456–462. doi:10.1093/hmg/ddr479
41. Moore, L. E., Jaeger, E., Nickerson, M. L., Brennan, P., De Vries, S., Roy, R., … Waldman, F. M. (2012). Genomic copy number alterations in clear cell renal carcinoma: associations with case characteristics and mechanisms of VHL gene inactivation. Oncogenesis, 1(6), e14–e14. doi:10.1038/oncsis.2012.14
42. Dalgin G.S., Holloway D.T., Liou L.S., DeLisi C. Identification and characterization of renal cell carcinoma gene markers. Cancer Inform. 2007;3:65–92
43. THE HUMAN PROTEIN ATLAS
https://www.proteinatlas.org/ENSG00000123104-ITPR2/pathology/renal+cancer
44. Ondrias K., Sirova M., Kubovcakova L., Krizanova O. Uranyl acetate modulates gene expression and protein levels of the type 2, but not type 1 inositol 1,4,5-trisphosphate receptors in mouse kidney. Gen. Physiol. Biophys. 2008;27:187–193.
45. Ondrias K., Sirova M., Kubovcakova L., Krizanova O. Uranyl acetate modulates gene expression and protein levels of the type 2, but not type 1 inositol 1,4,5-trisphosphate receptors in mouse kidney. Gen. Physiol. Biophys. 2008;27:187–193.
46. Ondrias K., Sirova M., Kubovcakova L., Krizanova O. Uranyl acetate modulates gene expression and protein levels of the type 2, but not type 1 inositol 1,4,5-trisphosphate receptors in mouse kidney. Gen. Physiol. Biophys. 2008;27:187–193.
47. Tohmonda T, Yoda M, Iwawaki T, et al. IRE1α/XBP1-mediated branch of the unfolded protein response regulates osteoclastogenesis. J Clin Invest. 2015;125(8):3269–3279. doi:10.1172/JCI76765
48. Cairns P. Renal cell carcinoma. Cancer Biomark. 2010;9(1-6):461–473. doi:10.3233/CBM-2011-0176
49. Drucker, B. J. (2005). Renal cell carcinoma: Current status and future prospects. Cancer Treatment Reviews, 31(7), 536–545. doi:10.1016/j.ctrv.2005.07.009
50. Network, C.G.A.R., Comprehensive molecular characterization of clear cell renal cell
carcinoma. Nature, 2013. 499(7456): p. 43.
51. Peña-Llopis, S., et al., BAP1 loss defines a new class of renal cell carcinoma. Nature
genetics, 2012. 44(7): p. 751.
52. Ricketts, C.J., et al., Genome-wide CpG island methylation analysis implicates novel
genes in the pathogenesis of renal cell carcinoma. Epigenetics, 2012. 7(3): p. 278-290.
53. Garg, A. D., Kaczmarek, A., Krysko, O., Vandenabeele, P., Krysko, D. V., & Agostinis, P. (2012). ER stress-induced inflammation: does it aid or impede disease progression? Trends in Molecular Medicine, 18(10), 589–598. doi:10.1016/j.molmed.2012.06.010.
54. Bonizzi, G. and Karin, M. (2004) The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol. 25, 280–288.
55. Angel, P. et al. (2001) Function and regulation of AP-1 subunits in skin
physiology and pathology. Oncogene 20, 2413–2423.
56. Hu, P. et al. (2006) Autocrine tumor necrosis factor alpha links endoplasmic reticulum stress to the membrane death receptor pathway through IRE1alpha-mediated NF-kappaB activation and down-regulation of TRAF2 expression. Mol. Cell. Biol. 26, 3071–3084.
57. Kaneko, M. et al. (2003) Activation signal of nuclear factor-kappa B in response to endoplasmic reticulum stress is transduced via IRE1 and tumor necrosis factor receptor-associated factor 2. Biol. Pharm. Bull. 26, 931–935.
58. Ghosh R, Lipson KL, Sargent KE, Mercurio AM, Hunt JS, Ron D, Urano F. Transcriptional regulation of VEGF-A by the unfolded protein response pathway. PloS one. 2010; 5:e9575. [PubMed: 20221394].
59. Auf G, Jabouille A, Guerit S, Pineau R, Delugin M, Bouchecareilh M, Magnin N, Favereaux A, Maitre M, Gaiser T, et al. Inositol-requiring enzyme 1alpha is a key regulator of angiogenesis and invasion in malignant glioma. Proc Natl Acad Sci U S A. 2010; 107:15553–15558. [PubMed: 20702765].
60. Bettigole SE, Glimcher LH. Endoplasmic reticulum stress in immunity. Annu Rev Immunol. 2015; 33:107–138. [PubMed: 25493331]
61. Hu R, Chen ZF, Yan J, Li QF, Huang Y, Xu H, Zhang XP, Jiang H. Endoplasmic Reticulum Stress of Neutrophils Is Required for Ischemia/Reperfusion-Induced Acute Lung Injury. J Immunol. 2015; 195:4802–4809. [PubMed: 26475925].
62. Banerjee A, Lang JY, Hung MC, Sengupta K, Banerjee SK, Baksi K, Banerjee DK. Unfolded protein response is required in nu/nu mice microvasculature for treating breast tumor with tunicamycin. J Biol Chem. 2011;286:29127–29138.
63. Dibdiakova, K., Saksonova, S., Pilchova, I., Klacanova, K., Tatarkova, Z., & Racay, P. (2018). Both thapsigargin- and tunicamycin-induced endoplasmic reticulum stress increases expression of Hrd1 in IRE1-dependent fashion. Neurological Research, 1–12. doi:10.1080/01616412.2018.1547856.
64. Liu, Ting et al. “NF-κB signaling in inflammation.” Signal transduction and targeted therapy vol. 2 (2017): 17023–. doi:10.1038/sigtrans.2017.23
65. Murphy KM. Janeway’s Immunobiology, 8th edn. Garland, 2010
66. Wang N, Liang H, Zen K. Molecular mechanisms that influence the macrophage m1-m2 polarization balance. Front Immunol 2014; 5: 614.
67. Mosser DM. The many faces of macrophage activation. J Leukoc Biol 2003; 73: 209–212.
68. Varghese E, Samuel SM, Sadiq Z, et al. Anti-Cancer Agents in Proliferation and Cell Death: The Calcium Connection. Int J Mol Sci. 2019;20(12):3017. Published 2019 Jun 20. doi:10.3390/ijms20123017.
69. Chen, Y., Chen, Y., Chiu, W. et al. Remodeling of calcium signaling in tumor progression. J Biomed Sci 20, 23 (2013) doi:10.1186/1423-0127-20-23.
70. Flamment, M., Hajduch, E., Ferré, P., & Foufelle, F. (2012). New insights into ER stress-induced insulin resistance. Trends in Endocrinology & Metabolism, 23(8), 381–390. doi:10.1016/j.tem.2012.06.003.
71. Torres M, Encina G, Soto C, Hetz C. Abnormal calcium homeostasis and protein folding stress at the ER: A common factor in familial and infectious prion disorders. Commun Integr Biol. 2011;4(3):258–261. doi:10.4161/cib.4.3.15019.
72. Foskett, J. K., White, C., Cheung, K.-H., & Mak, D.-O. D. (2007). Inositol Trisphosphate Receptor Ca2+ Release Channels. Physiological Reviews, 87(2), 593–658. doi:10.1152/physrev.00035.2006.
73. Chandrasekhar,Rahul, Yule,David I. and Wang,Liwei. (2017). Inositol 1,4,5-trisphosphate receptors (InsP3R). Pancreapedia: Exocrine Pancreas Knowledge Base, DOI: 10.3998/panc.2017.07.
74. Kania, E., Pająk, B., & Orzechowski, A. (2015). Calcium Homeostasis and ER Stress in Control of Autophagy in Cancer Cells. BioMed Research International, 2015, 1–12. doi:10.1155/2015/352794.
75. Cubillos-Ruiz, J. R., Bettigole, S. E., & Glimcher, L. H. (2017). Tumorigenic and Immunosuppressive Effects of Endoplasmic Reticulum Stress in Cancer. Cell, 168(4), 692–706. doi:10.1016/j.cell.2016.12.004.
指導教授 徐沺(Tien Hsu) 審核日期 2020-1-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明