博碩士論文 107222018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:96 、訪客IP:18.118.253.117
姓名 關宇宏(Yu-Hung Kuan)  查詢紙本館藏   畢業系所 物理學系
論文名稱 一維席捲式增益介質中超螢光傳播現象的理論研究
(Theoretical study of superfluorescence propagation effect in one dimensional swept-gain medium)
相關論文
★ 利用Mössbauer放射性同位素與57FeBO3晶體產生X-ray短脈衝光源的理論研究★ 57Fe原子核量子光學中γ-ray光子回波的理論研究
★ 無鏡式電磁誘發光放大器★ 中主量子數雷德堡電磁誘發透明系統中的慢光傳播現象
★ 利用X射線自由電子雷射在漸細型波導管中激發原子核的理論研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 增益介質的製備對超螢光的研究至關重要,即不同的初始條件會導致不同的超螢光行為。1970到1980年代超螢光的理論研究都建構在橫向均勻泵浦或縱向席捲式泵浦上,而後者都使用不真實的δ函數來描述超短泵浦雷射脈衝。近年來隨著飛秒雷射科技的進步,使用數十飛秒雷射脈衝來製備增益介質進而產生超螢光的研究至少在兩個領域引人注目:(1)利用X射線自由電子雷射透過拉曼散射在惰性氣體中產生其他波長的光源;(2)氮氣雷射及其產生居量反轉的成因。本文探討在上述兩個系統中使用飛秒雷射製造席捲式增益介質以產生超螢光,及不同雷射和介質參數對超螢光行為的操控。透過分析我們發現相較於過去使用的δ函數,飛秒脈衝的寬度對產生增益介質的效率和前向及後向超螢光的傳播行為影響甚鉅。在氮氣雷射上我們成功擬和雙脈衝實驗的實驗結果,並在最後提出一個驗證居量反轉的方法。
摘要(英) The preparation of gain medium is extremely important for the study of superfluorescence, that is, different initial conditions will lead to different superfluorescence behavior. The theoretical studies of superfluorescence from the 1970s to 1980s were based on a transversely homogeneous pump or swept-gain pump for the latter an unrealistic δ function conventionally used to describe the ultrashort pump laser pulse. With the development of femtosecond laser technology in recent years, femtosecond laser pulses are used to prepare the gain medium and to generate superfluorescence. Along this line, there are at least two interesting topics: (1) Using X-ray free-electron laser to generate a light source of different wavelengths in noble gas through Raman scattering; (2) Studying Nitrogen-based laser and its origin of population inversion. This article explores the use of femtosecond laser to produce the swept-gain medium in the two systems described above to generate superfluorescence, as well as, the manipulation of the behavior of superfluorescence by the different laser and medium parameters. Through analysis, we find that compared with the conventional δ function used in the past studies, the duration of the femtosecond pulse has a significant effect on the efficiency of the gain medium and the propagation behavior of forward and backward superfluorescence. In the nitrogen laser, we successfully simulated the experimental results of the two-pulse experiments and finally proposed a method to verify the population inversion.
關鍵字(中) ★ X射線雷射
★ 自發輻射放大
★ 超螢光現象
關鍵字(英) ★ X-Ray laser
★ Amplified spontaneous emission
★ Superfluorescence
論文目次 中文摘要 ............................................................................................ i
英文摘要............................................................................................. ii
誌謝................................................................................................ iii
目錄................................................................................................ iv
圖目錄.............................................................................................. vi
符號說明............................................................................................ ix
第一部份: 自發輻射放大過渡到超螢光現象之研究
第一章: 介紹........................................................................................ 1
1-1 超螢光(Superfluorescence, SF ) .................................................. 2
1-2 自發輻射放大(Amplified spontaneous emission, ASE ) ............................... 3
1-3 X-ray光源................................................................... 4
第二章: 理論模型............................................................................. 6
2-1 三能階 Λ型態模型................................................................. 6
2-2 居量反轉的解析解..................................................................11
第三章: 結果分析..................................................................................... 18
3-1 介質對ASE-SF轉換的影響........................................................... 18
3-2 反向傳播光分析................................................................... 29
3-3 X-Ray自由電子雷射對ASE-SF轉換的影響........................................... 33
第四章: 結論................................................................................ 35
參考文獻 ........................................................................................... 36
第二部份: 多態氮氣離子的居量反轉與超螢光............................................................... 37
介紹....................................................................................... 37
理論模型.................................................................................... 41
結果分析.................................................................................... 45
3-1 氮氣離子居量重分布前後分析........................................................ 45
3-2 氮氣雷射模擬結果................................................................ 46
3-3 雙種子雷射...................................................................... 47
3-4 雙泵浦雷射...................................................................... 48
結論....................................................................................... 53
參考文獻............................................................................................ 54
附錄A 數值模擬方法................................................................................... 55
附錄B 噪音推導…..................................................................................... 62
附錄C ASE的行為分析................................................................................. 66
參考文獻 第一部份
[1] R. H. Dicke, Phys. Rev.93, 99 (1954).
[2] N. Skribanowitz, I. P. Herman, J. C. MacGillivray, and M. S. Feld, Phys. Rev. Lett.30, 309 (1973).
[3] H. M. Gibbs, Q. H. F. Vrehen, and H. M. J. Hikspoors, Phys. Rev. Lett.39, 547 (1977).
[4] E. Paradis, B. Barrett, A. Kumarakrishnan, R. Zhang, and G. Raithel, Phys. Rev. A77, 043419 (2008).
[5] M. S. Malcuit, J. J. Maki, D. J. Simkin, and R. W. Boyd, Phys. Rev. Lett.59, 1189 (1987).
[6] M. Gross and S. Haroche, Physics reports93, 301 (1982).
[7] D. Polder, M. F. H. Schuurmans, and Q. H. F. Vrehen, Phys. Rev. A19, 1192 (1979).
[8] C. Weninger and N. Rohringer, Phys. Rev. A 90, 063828 (2014).
[9] J.R. Deschamps, Life Sciences, vol. 86, p.585 (2010)
[10] R. Friedberg and S. R. Hartmann, Phys. Rev. A13, 495 (1976)
[11] J. C. MacGillivray and M. S. Feld, Phys. Rev. A 14, 1169 (1976).
[12] M. D. Crisp, Phys. Rev. A1, 1604 (1970).
[13] N. Rohringer, D. Ryan, R. A. London, M. Purvis, F. Albert, J.Dunn,J.D.Bozek,C.Bostedt,A.Graf,R.Hill,etal.,Nature 481, 488 (2012).
[14] H. Yoneda, Y. Inubushi, K. Nagamine, Y. Michine, H. Ohashi, H. Yumoto, K. Yamauchi, H. Mimura, H. Kitamura, T. Katayama, et al., Nature524, 446 (2015).
[15] F. Haake, H. King, G. Schröder, J. Haus, R. Glauber, and F. Hopf, Phys. Rev. Lett.42, 1740 (1979).
[16] F. Haake, H. King, G. Schröder, J. Haus, and R. Glauber, Phys. Rev. A20, 2047 (1979).
[17] Matthews, D. L. et al. Demonstration of a soft X-ray amplifier. Phys. Rev. Lett. 54, 110–113 (1985).
第二部分
[1] Dogariu, J. B. Michael, M. O. Scully, and R. B. Miles, Science 331(6016), 442–445 (2011).
[2] Mingwei Lei, Chengyin Wu, An Zhang, Qihuang Gong, and Hongbing Jiang, Opt. Express 25, 4535 (2017).
[3] Yi Liu, Pengji Ding, Guillaume Lambert, Aurélien Houard, Vladimir Tikhonchuk, and André Mysyrowicz1, PRL,115,133203(2015).
[4] Jinping Yao, Shicheng Jiang, Wei Chu, Bin Zeng, Chengyin Wu, Ruifeng Lu,Ziting Li, Hongqiang Xie, Guihua Li, Chao Yu, Zhanshan Wang, Hongbing Jiang, Qihuang Gong, and Ya Cheng, PRL,116,143007(2016).
[5] Sergey Mitryukovskiy, Yi Liu, Pengji Ding, Aurélien Houard and André Mysyrowicz, oe-22-11-12750(2014)
[6] F. T. Arecchi and E. Courtens, Phys. Rev. A 2, 1730 (1970).
[7] J. C. MacGillivray and M. S. Feld, Phys. Rev. A 14, 1169 (1976).
[8] D. Polder, M. F. H. Schuurmans, and Q. H. F. Vrehen, Phys. Rev.
A 19, 1192 (1979).
[9] M. Schuurmans and D. Polder, Physics Letters A 72, 306 (1979).
[10] L. Yuan and A. A. Svidzinsky, Phys. Rev. A 85, 033836 (2012).
[11] C. Weninger and N. Rohringer, Phys. Rev. A 90, 063828 (2014).
附錄
Angus MacKinnon, Computational Physics - 3rd/4th Year Option, September 26, 2002.
William H. Press, Saul A. Teukolsky, William T. Vetterling, Brian P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, 2nd Edition.
指導教授 廖文德(Wen-Te Liao) 審核日期 2020-1-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明