博碩士論文 106222008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:3.143.168.172
姓名 吳雨蓉(YU-JUNG WU)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(Inactivity of Pt nanoclusters Modified by Atomic Oxygen and Au on Graphene/Pt(111) in the Decomposition of Methanol-d4)
相關論文
★ 鐵電型液晶材料光熱相變研究★ An AFM study of thermal behavior of lipid over layers on mica
★ 利用RHEED、LEED、AES 研究Al2O3在NiAl(100)和Co在Al2O3/NiAl(100)上的幾何結構和生長方式★ Patterning Co Nanoclusters on Thin Film Al2O3/NiAl(100)
★ Growth of Oxide on NiAl(100) and its Interaction with Au★ 用原子力顯微鏡在脂質膜上做微影術並且討論其在基板上之動力行為
★ Catalytic properties of Au nanoclusters supported on Al2O3/NiAl (100) surface★ Atomic Structures and Electro-catalytic Properties of Pt Nanoclusters on Thin Film Al2O3/NiAl(100)
★ Nanowires from Aligned One-dimensional Arrays of Co Nanoclusters on Al2O3 Grown on Vicinal NiAl Surfaces★ 以掃描穿隧電子顯微鏡及光激發能譜研究奈金屬粒子在氧化鋁薄膜上的成長
★ 在氧化鋁上成長金與白金的和金奈米粒子★ 以第一原理研究一到二顆金原子在θ型氧化鋁(001)表面上的吸附與擴散行為
★ 甲醇在以thita-三氧化二鋁/鎳鋁合金為基板之奈米黃金粒子上的分解反應-以熱脫附質譜術與傅立葉紅外光譜儀方法之研究★ 探測θ-Al2O3/NiAl(100)表面之下的結構以及Au-Pt雙金屬顆粒在θ-Al2O3/NiAl(100)表面上的形貌
★ 利用穿隧式電子顯微鏡的探針產生在鎳鋁合金(100)面上的局部氧化反應★ 利用PES探討吸附物對Au-Pt奈米團簇所引發表面發生重構的現象
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 以Pt(111)為基底的石墨烯(graphene)上的Pt金屬奈米粒子對甲醇分解的催化在之前的研究已經透過熱脫附質譜(TPD)和紅外光反射吸收能譜(IRAS)研究,研究顯示甲醇幾乎沒有分解並直接脫附,沒有中間產物甲氧基(CH3O)的產生,這些結果和甲醇在Pt(111)上的結果有很大的不同,這個不同由於Pt奈米粒子有較Pt(111)小的晶格常數導致甲醇在Pt奈米粒子上的吸附能較在Pt(111)上來的小。
在這個研究中我們以兩種方法來調整Pt金屬奈米粒子,一個是預先吸附氧原子在Pt奈米粒子上,另一個是在蒸鍍Pt金屬奈米粒子前先蒸鍍Au金屬奈米粒子,形成Au-Pt合金奈米粒子。在Pt奈米粒子上的氧原子的效果被預期為協助甲醇脫氫形成中間產物甲氧基,我們藉由XPS、TPD、IRAS研究甲醇在氧原子預吸附的Pt奈米粒子上的分解反應,經由XPS知道氧原子預吸附的Pt奈米粒子可以透過將Pt奈米粒子加熱到570K曝露在氧氣中的方法製備,並且隨著氧氣曝量的上升,在飽和前氧原子的覆蓋率也會大致隨之上升。從TPD脫附譜線得到甲醇在氧原子預吸附的Pt奈米粒子上仍然沒有分解形成CO及D2; IR吸收光譜顯示了在0.014O_sat 氧原子覆蓋率的Pt奈米粒子上,甲醇在150K到200K會脫氫形成中間產物甲氧基,然而甲氧基不會進一步分解為CO及D2,在飽和氧原子覆蓋率O_sat的Pt奈米粒子上,則沒有甲氧基的生成,因為飽和的氧原子會覆蓋Pt奈米粒子造成甲醇吸附量減少。
Au塊材的晶格常數為4.08 Å 較Pt塊材的晶格常數3.92Å大,Au金屬奈米粒子在Au-Pt合金奈米粒子中的效果被預期為可以使Pt金屬奈米粒子的晶格常數增加,然而TPD脫附譜線顯示吸附的甲醇在Au-Pt合金奈米粒子上沒有產物的生成,暗示著甲醇在Au-Pt合金奈米粒子上仍然不會進行分解反應。
摘要(英) The decomposition of methanol-d4 on Pt nanoclusters grown by metal deposition on graphene/Pt(111) has been studied with TPD and IRAS previously. The results show that methanol-d4 did not decompose but desorbed mostly, and no methoxy intermediates observed which is in contrast with those on Pt(111) surface. This disparate results from the smaller adsorption energy of methanol on the Pt clusters than on Pt(111) which is owing to the smaller lattice constant of Pt clusters than Pt(111).
In this study, Pt nanoclusters on graphene/Pt(111) were modified by two methods, one is pre-adsorption of atomic oxygen on Pt clusters, and the other is the addition of Au deposition prior to Pt deposition to form Au-Pt bimetallic clusters. The effect of atomic oxygen on the Pt clusters, expected to assist the formation of methoxy via abstracting d from methanol-d4, on the reaction was clarified by comparison with the reaction on Pt clusters. Using XPS, TPD, and IRAS, we have investigated the reactivity of methanol-d4 on atomic oxygen pre-adsorbed Pt nanoclusters on graphene/Pt(111). Atomic oxygen pre-adsorbed Pt nanoclusters prepared by exposing Pt clusters to oxygen doses at 570K confirmed with XPS; higher dose of oxygen mostly lead to larger coverages of atomic oxygen. The TPD spectra exhibit no evidence of methanol decompose to CO and D2. The IRAS spectra show formation of methoxy from methanol-d4 only on Pt clusters with 0.014O_sat coverage of atomic oxygen pre-adsorbed at the temperature from 150K to 200K. Saturation coverage of atomic oxygen block Pt sites lead to no formation of methoxy.
The lattice constant of Au bulk is 4.08 Å which is larger than that of Pt bulk(3.92Å). The effect of Au in Au-Pt bimetallic clusters are expected to expand the lattice constant of Pt clusters on graphene/Pt(111). The reaction of methanol on Au-Pt bimetallic clusters was monitored with TPD still like that on Pt clusters show no decomposition of methanol to CO and D2. Both Pt clusters with atomic oxygen pre-adsorbed Pt nanoclusters and Au-Pt bimetallic clusters on graphene/Pt(111) are inactive in Methanol-d4 decomposition .
關鍵字(中) ★ 甲醇
★ 金屬奈米團簇
★ 白金
★ 分解反應
★ 原子氧
關鍵字(英) ★ methanol
★ nanoclusters
★ Pt
★ decomposition
★ atomic oxygen
論文目次 Chapter 1 Introduction 1
Chapter 1 References 2
Chapter 2 Literature survey 3
2.1 Atomic structures of Pt nanoclusters on graphene/Pt(111) 3
2.2 Decomposition of Methanol on clean and oxygen-covered Pt(111) surface 12
2.3 Decomposition of Methanol-d4 on Pt nanoclusters on Graphene/Pt (111) 20
Chapter 2 References 28
Chapter 3 Experimental Apparatus and Procedure 30
3.1 Apparatus and Ultrahigh Vacuum (UHV) System 30
3.1.1 Introduction to Vacuum 31
3.1.2 Low Energy Electron Diffraction (LEED) 33
3.1.3 Auger Electron Spectroscopy (AES) 33
3.1.4 X-ray photoelectron spectroscopy (XPS) 34
3.1.5 Thermal Desorption Spectroscopy (TDS) 38
3.1.6 Infrared reflection adsorption spectroscopy (IRAS) 41
3.1.7 Fourier Transform Interferometers 44
3.2 Experimental Procedures 47
3.2.1 Sample Cleaning 47
3.2.2 Graphene Growth 48
3.2.3 Vapor deposition of Pt and Au 49
Chapter 3 References 49
Chapter 4 Results and discussions 51
4.1 XPS spectra for Pt/Graphene/Pt (111) with varied coverages of atomic oxygen 51
4.2 TPD spectra for CO adsorbed on Pt/Graphene/Pt (111) after different treatments: 600K anneal and
saturated atomic oxygen pre-adsorbed 56
4.3 The reaction of methanol Pt clusters/Graphene/Pt (111) with atomic oxygen pre-adsorbed 60
4.3.1 TPD spectra for methanol on Pt clusters with atomic oxygen pre- adsorbed 60

4.3.2 IRAS spectra for methanol on Pt clusters with atomic oxygen pre-adsorbed 64
4.4 The reaction of methanol on Pt-Au bimetallic clusters/Graphene/Pt (111) 71
Chapter 4 References 74
Chapter 5 Conclusion 75
參考文獻 [1.1] Joghee, P., Malik, J. N., Pylypenko, S., & O’Hayre, R.; Materials Research Society,(2015)
[1.2] Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jonsson,
J. Phys. Chem. B 2004, 108,17886−17892.
[1.3] Hamnett, A.; Catal. Today 1997, 38, 445−457.
[1.4] P.-Y. Cai, Y.-W. Huang, Y.-C. Huang, M.-C. Cheng, L.-W. Lan, C.-C. Kuo, J.-H. Wang, and M.-
F. Luo, J. Phys. Chem. C 122, 16132 (2018)
[1.5] A. S. Ansari, Z.-Y. Chern, P.-Y. Cai, Y.-W. Huang, G.-J. Liao, J.-H. Wang, and M.-F. Luo; J.
Chem. Phys. 151, 224707 (2019)
[1.6] Brett A. SEXTON; Surface Science 102 (1981) 271-281
[1.7] J. Schwank, AIChE J. 31, 1405 (1985).
[2.1] Gao, M.; Pan, Y.; Zhang, C.; Hu, H.; Yang, R.; Lu, H.; Cai, J.;Du, S.; Liu, F.;
Gao, H.-J. 2010, 96, 053109.
[2.2] Gao, M.; Pan, Y.; Huang, L.; Hu, H.; Zhang, L. Z.; Guo, H. M.; Du, S. X.; Gao,
H.-J.. Appl. Phys. Lett. 2011, 98, 033101.
[2.3] Liang, Z.; Khosravian, H.; Uhl, A.; Meyer, R. J.; Trenary, M. Surf. Sci. 2012,
606, 1643−1648.
[2.4] N’Diaye, A. T.; Gerber, T.; Busse, C.; Myslivecek, J.; Coraux, J.;Michely, T.
New J. Phys. 2009, 11, 103045.
[2.5] N’Diaye, A. T.; Bleikamp, S.; Feibelman, P. J.; Michely, T. Phys.Rev. Lett. 2006,
97, 215501.
[2.6] Preobrajenski, A. B.; Ng, M. L.; Vinogradov, A. S.; Mårtensson,N. Phys. Rev. B:
Condens. Matter Mater. Phys. 2008, 78,073401.
[2.7] Otalora-Acevedo, J.; Martínez, J. A. R.; Moreno-Armenta, G.;Vera, E.; Tan, N.
T. J. Phys.: Conf. Ser. 2016,743, 012006.
[2.8] Khan, E.; Rahman, T. S.; Subrina, S. J. Appl. Phys.2016, 120, 185101.
[2.9] Zhang, S; CRC Press, 2010; Vol. 1.
[2.10] Aliofkhazraei, M.; Ali, N.; Milne, W.; Ozkan, C.; Mitura, S. L.; Gervasoni, J;
Taylor Francis, 2016.
[2.11] Zhou, Z.; Gao, F.; Goodman, D. W. Surf. Sci. 2010, 604, L31−L38.
[2.12] G.B. Fisher and J.L. Gland, Surface Sci. 94 (1980) 446.
[2.13] P.-Y. Cai, Y.-W. Huang, Y.-C. Huang, M.-C. Cheng, L.-W. Lan, C.-C. Kuo,
J.-H. Wang, and M.-F. Luo, J. Phys. Chem. C 122, 16132 (2018).
[2.14] K. Christmann, G. Ertl and T. Pignet, Surface Sci. 54 (1976) 365.
[2.15] B. A. Sexton, Surf. Sci. 102, 271 (1981).
[2.16] K. Nakamoto (Wiley, New York, 1978).
[2.17] B.A. Sexton, Surface Sci. 88, 299 (1979).
[2.18] J.E. Demuth, H. Ibach and S. Lehwald, Phys. Rev. Letters. 40, 1044 (1978).
[2.19] G.B. Fisher, T.L. Madey, B.J. Waclwaski and J.T. Yates, in: Proc. 7th Intern.
Vacuum Congr. and 3rd Intern. Conf. on Solid Surfaces, Vienna, 1977, Vol. II, p.
1071.
[2.20] A.M. Baro and H. Ibach, J. Chem. Phys. 71, 4812 (1979).
[2.21] J.L. Gland, B.A. Sexton and G.B. Fisher, Surface Sci. 95, 587 (1980).
[2.22] J.E. Demuth and H. Ibach, Chem. Phys. Letters 60 (1979) 395.
[2.23] K. Christmann, G. Ertl and T. Pignet, Surface Sci. 54 (1976) 365.
[2.24] R.W. McCabe and L.D. Schmidt, Surface Sci. 65 (1977) 189.
[2.25] G.B. Fisher and B.A. Sexton, Phys. Rev. Letters 44 (1980) 683.
[2.26] R. S. Smith, J. Matthiesen, and B. D. Kay, J. Phys. Chem. A 118, 8242 (2014).
[2.27] B. A. Sexton, Surf. Sci. 102, 271 (1981).
[2.28] J. Wang and R. I. Masel, J. Am. Chem. Soc. 113, 5850 (1991).
[2.29] N. Kizhakevariam and E. M. Stuve, Surf. Sci. 286, 246 (1993).
[2.30] C.-S. Chao, Y.-D. Li, B.-W. Hsu, W.-R. Lin, H.-C. Hsu, T.-C. Hung, C.-C.
Wang,and M.-F. Luo, J. Phys. Chem. C 117, 5667 (2013).
[2.31] G.-R. Hu, C.-S. Chao, H.-W. Shiu, C.-T. Wang, W.-R. Lin, Y.-J. Hsu,and M.-F.
Luo, Phys. Chem. Chem. Phys. 13, 3281 (2011).
[2.32] S. Schauermann, J. Hoffmann, V. Johanek, J. Hartmann, and J. Libuda,
Phys.Chem. Chem. Phys. 4, 3909 (2002)
[2.33] T.-C. Hung, T.-W. Liao, Z.-H. Liao, P.-W. Hsu, P.-Y. Cai, H. Lee, Y.-L. Lai, Y.-
J. Hsu, H.-Y. Chen, J.-H. Wang, and M.-F. Luo, ACS Catal. 5, 4276(2015).
[2.34] Y. D. Li, T. W. Liao, C. X. Wang, C. S. Chao, T. C. Hung, C. Y. Ho, M. F. Luo,
Y.-L. Lai, and Y.-J. Hsu, RSC Adv. 4, 31602 (2014).
[2.35] A. S. Ansari, Zhao-Ying Chern, Pei-Yang Cai, Yen-Wen Huang, Guan-Jr Liao, Jeng-Han
Wang, and Meng-Fan Luo, J. Chem. Phys. 151, 224707 (2019)
[2.36] B. A. Sexton, K. D. Rendulic, and A. E. Huges, Surf. Sci. 121, 181 (1982).
[2.37] W. S. Sim, P. Gardner, and D. A. King, J. Phys. Chem. 99, 16002 (1995).
[2.38] J. S. Huberty and R. J. Madix, Surf. Sci. 360, 144 (1996).
[2.39] R. B. Barros, A. R. Garcia, and L. M. Ilharco, J. Phys. Chem. B 105, 11186
(2001).
[2.40] S. J. Pratt, D. K. Escott, and D. A. King, J. Chem. Phys. 119, 10867 (2003).
[3.1] Peter J. Dobson, An Introduction to Reflection High Energy Electron
Diffraction.
[3.2] Elaine M. McCash, Surface Chemistry.
[3.3] John B. Hudson, Surface Science: An Introduction.
[3.4] 行政院國家科學委員會精密儀器發展中心, 真空技術與應用.
[3.5] J. C. Vickerman, Surface Analysis – The Principal Techniques, Jon Wiley & Sons,
1997.
[3.6] A. K. Stantra and D.W. Goodman, J.Phys: Condens Matter, Vol.14, R31 - R62.
2002.
[3.7] D.j. O’Connor, B. A. Sexton, R. St. C. Smart, Surface Analysis Methods in
Materials Science, Springer-Verlag, 1992
[3.8] Y. W. Yang, L. J. Fan, “High-Resolution XPS Study of Decanethiol on Au(111): 
[3.9] Elaine M. McCash, Surface Chemistry, Oxford University Press (2001).
[3.10] R. G. Greenler, J. Chem. Phys., 44, 310 (1966).
[3.11] A.M. Bradshaw, E. Schweizer, Infrared reflection absorption spectroscopy of
adsorbed molecules, in: R.E. Hester(Ed.), Advances in Spectroscopy:
Spectroscopy of Surfaces, Wiley, New York (1988)
[3.12] Marcus Bäumer, H.-J. Freund, Progress in Surf. Sci. 61, 127 (1999).
[3.13] ABB FT-IR reference manual.
[3.14] 李冠卿, 近代光學, 聯經出版社 (1988).
[4.1] M. KISKINOVA, G. PIRUG and H.P. BONZEL; Surface Science, 150(2), 319–338.
[4.2] Feng Tao, Sefa Dag, Lin-Wang Wang, Zhi Liu, Derek R. Butcher, Hendrik Bluhm, Miquel
Salmeron, Gabor A. Somorjai; Science 327, 850 (2010)
[4.3] C.R. Parkinson, M. Walker, C.F. McConville; Surface Science 545 (2003) 19–33
[4.4] A. B. Preobrajenski, May Ling Ng, A. S. Vinogradov, and N. Mårtensson; PHYSICAL
REVIEW B 78, 073401 (2008)
[4.5] Louise Olsson, and Erik Fridell; Journal of Catalysis 210, 340–353 (2002)
[4.6] C. Puglia *, A. Nilsson, B. Hernniis, O. Karis, P. Bennich, N. M~rtensson ; Surface Science 342
(1995) 119-133
[4.7] A. S. Ansari, Zhao-Ying Chern, Pei-Yang Cai, Yen-Wen Huang, Guan-Jr Liao, Jeng-Han Wang,
and Meng-Fan Luo; J. Chem. Phys. 151, 224707 (2019)
[4.8] Matthew J. Lundwall, Sean M. McClure, and D. Wayne Goodman, J. Phys. Chem. 114, 7904
(2010)
[4.9] Brett A. SEXTON; Surface Science 102 (1981) 271-281
[4.10] J. S. Huberty and R. J. Madix, Surf. Sci. 360, 144 (1996).
指導教授 羅夢凡(Meng-Fan Luo) 審核日期 2020-5-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明