博碩士論文 105222602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:103 、訪客IP:3.149.247.153
姓名 ALFIATUR RAHMAH(ALFIATUR RAHMAH)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(Structural Characterization of Transition Metal Nanoclusters Supported on Graphene/Ru(0001) and Al2O3/NiAl(100) by RHEED and STM)
相關論文
★ 鐵電型液晶材料光熱相變研究★ An AFM study of thermal behavior of lipid over layers on mica
★ 利用RHEED、LEED、AES 研究Al2O3在NiAl(100)和Co在Al2O3/NiAl(100)上的幾何結構和生長方式★ Patterning Co Nanoclusters on Thin Film Al2O3/NiAl(100)
★ Growth of Oxide on NiAl(100) and its Interaction with Au★ 用原子力顯微鏡在脂質膜上做微影術並且討論其在基板上之動力行為
★ Catalytic properties of Au nanoclusters supported on Al2O3/NiAl (100) surface★ Atomic Structures and Electro-catalytic Properties of Pt Nanoclusters on Thin Film Al2O3/NiAl(100)
★ Nanowires from Aligned One-dimensional Arrays of Co Nanoclusters on Al2O3 Grown on Vicinal NiAl Surfaces★ 以掃描穿隧電子顯微鏡及光激發能譜研究奈金屬粒子在氧化鋁薄膜上的成長
★ 在氧化鋁上成長金與白金的和金奈米粒子★ 以第一原理研究一到二顆金原子在θ型氧化鋁(001)表面上的吸附與擴散行為
★ 甲醇在以thita-三氧化二鋁/鎳鋁合金為基板之奈米黃金粒子上的分解反應-以熱脫附質譜術與傅立葉紅外光譜儀方法之研究★ 探測θ-Al2O3/NiAl(100)表面之下的結構以及Au-Pt雙金屬顆粒在θ-Al2O3/NiAl(100)表面上的形貌
★ 利用穿隧式電子顯微鏡的探針產生在鎳鋁合金(100)面上的局部氧化反應★ 利用PES探討吸附物對Au-Pt奈米團簇所引發表面發生重構的現象
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 負載型過渡金屬納米團簇由於其在一系列領域中的潛在應用而在近幾十年來得到了廣泛的研究。然而,這種負載的納米糰簇的詳細結構研究,特別是在催化模型系統中很稀少。在目前的工作中,我們在超高真空條件下利用反射高能電子衍射(RHEED),掃描穿隧顯微鏡(STM)研究了石墨烯/ Ru(0001)上的Rh和V納米糰簇以及Al2O3 / NiAl(100)基底上的Cu團簇的結構。團簇在300 K的蒸汽沉積到基板上時生長,結果表明,Rh團簇結構有序,在fcc相中生長,其(111)面與石墨烯表面平行;它們的晶格相對於整體Rh擴展了2.4%,晶格常數隨著退火和覆蓋率(尺寸)的增加而降低。相反地,V團簇在結構上是無序的,不產生特徵衍射圖。 V團簇的有序結構不會出現,因為V偏愛bcc相,而bcc結構的任何面在結構上都不能很好地匹配石墨烯的六邊形晶格。 Cu團簇也以fcc相生長,但它們的(001)和(111)面與氧化鋁表面平行,其中Cu(111)[01̅1] //θ- Al2O3(100)[01̅0]); Cu(111)[112̅] //θ-Al2O3(100)[01̅0];和Cu(001)[110] //θ- Al2O3(100)[010])。 Cu簇的晶格參數擴展到10.8%,平均高度從大約0.52nm開始直到0.97nm,而平均直徑從1.1nm開始到2.34nm。然後,團簇的密度在低覆蓋率下增加。當銅團簇退火至高溫時,其不在條狀突起上。
摘要(英) Supported transition metals nanoclusters have interested researcher in recent decades, because their potential applications in a range of fields. Nevertheless, detailed structural studies of such supported nanoclusters, particularly in model systems of catalysis, are few. In the present work, we investigate the structures of Rh and V nanoclusters on graphene/Ru(0001) and Cu ones on Al2O3/NiAl(100) substrates, with reflection high energy electron diffraction (RHEED), Scanning Tunneling Microscopy (STM) and under ultrahigh vacuum conditions. The clusters are grown on the deposition of vapors onto the substrates at 300 K. The results show that the Rh clusters are structurally ordered, growing in an fcc phase and having their (111) facets parallel to the graphene surface; their lattice expands, up to 2.4 %, relative to the bulk Rh and the lattice constant decreases with annealing and increased coverage (size). In contrast, the V clusters are structurally disordered, yielding no characteristic diffraction patterns. No ordered structure for V clusters arises because V prefers a bcc phase while no facets of a bcc structure match structurally well the hexagonal lattice of graphene. The Cu clusters also grow in an fcc phase but have (001) and (111) facets parallel to the alumina oxide, with Cu (111)[01 ̅1]// θ-Al2O3(100)[01 ̅0]); Cu(111)[112 ̅ ]//θ-Al2O3(100) [01 ̅0]; and Cu(001)[110]// θ-Al2O3 (100)[010]). The lattice parameters of Cu clusters expand up to 10.8%, with the average height start about 0.52 nm up to 0.97 nm whereas the average diameter starts from 1.1 nm to 2.34 nm and the clusters density the increases at low coverage. Then Cu clusters are not on the stripe protrusions when the clusters are annealed to high temperatures.
關鍵字(中) ★ 過渡金屬納米簇,
★ 石墨烯
★ Al2O3
★ RHEED
★ STM
關鍵字(英) ★ Transition Metal Nanoclusters,
★ Graphene
★ Al2O3
★ RHEED
★ STM
論文目次 Acknowledgement ii
Abstract iii
摘要 iv
Table of Contents v
List of Table vii
List of Figures viii
CHAPTER I 1
INTRODUCTION 1
Reference Chapter I 3
CHAPTER II 4
LITERATURE SURVEY 4
A. The Characteristic of Metal Nanoclusters Growth on Graphene/Ru(0001) 4
2.1 Graphene 4
2.2 Graphene/Transition Metal 5
2.2.1 Graphene/Platinum(111) 5
2.2.2 Graphene/Ruthenium(0001) 7
2.3 Metal Nanoclusters on Graphene/Ruthenium(0001) 10
B. The Characteristic of Metal Nanoclusters Growth on Al2O3/NiAl 15
2.4 Al2O3/NiAl 15
2.5 Metal nanoclusters on Al2O3/NiAl(100) 16
Reference Chapter II 21
CHAPTER III 25
EXPERIMENTAL APPARATUS AND PROCEDURE 25
3.1 Ultra-High Vacuum (UHV) System 25
3.2 Reflection High Energy Electron Diffraction (RHEED) 27
3.3 Scanning Tunneling Microscopy (STM) 31
3.3.1 RHK-UHV 300 STM 33
3.3.2 Preparing the STM tip 36
3.3.3 STM system 37
3.4 Experimental procedures 38
3.4.1 Sample Cleaning 38
3.4.2 Graphene and θ-Al2O3 Growth 39
3.4.3 Deposition Procedures 39
3.4.4 Estimation of coverage 40
Reference Chapter III 41
CHAPTER IV 43
RESULTS AND DISCUSSION 43
A. The Characteristic of Rh and V Nanoclusters Growth on Graphene/Ru(0001) 43
4.1 Clean Ru(0001) Surface 43
4.2 The Structure of Graphene on Ru(0001) 44
4.3 Metal Nanoclusters on Graphene/Ru(0001) 48
4.3.1 The Influence of Annealing for Rh and V Nanoclusters Growth on Graphene/Ru(0001) 48
B. The Characteristic of Cu Nanoclusters Growth on θ-Al2O3/NiAl(100) 60
4.4 RHEED studies of Cu Nanoclusters Growth on θ-Al2O3/NiAl(100) 60
4.5 STM Studies of Cu Nanoclusters on θ-Al2O3/NiAl(100) 66
4.5.1 Cu nanoclusters supported on θ-Al2O3/NiAl(100) with different coverage 66
4.5.2 Annealing effect on Cu nanoclusters supported on θ-Al2O3/NiAl(100) 73
Reference Chapter VI 80
CHAPTER V 82
CONCLUSION 82
參考文獻 Reference Chapter I
1. Zhang, L. Z.; Du, S. X.; Sun, J. T.; Huang, L.; Meng, L.; Xu, W. Y.; Pan, L. D.; Pan, Y.; Wang, Y. L.; Hofer, W. A.; Gao, H. J., Growth Mechanism of Metal Clusters on a Graphene/Ru(0001) Template. Advanced Materials Interfaces 2014, 1 (3).
2. Halperin, W. P., Quantum size effects in metal particles. Reviews of Modern Physics 1986, 58 (3), 533-606.
3. Khanna, S. N.; Castleman, A. W., Quantum Phenomena in Clusters and Nanostructures. 2003.
4. Lee, I.; Delbecq, F.; Morales, R.; Albiter, M. A.; Zaera, F., Tuning selectivity in catalysis by controlling particle shape. Nat Mater 2009, 8 (2), 132-8.
5. Zhou, Z.; Gao, F.; Goodman, D. W., Deposition of metal clusters on single-layer graphene/Ru(0001): Factors that govern cluster growth. Surface Science 2010, 604 (13-14), L31-L38.
6. Liu, L.; Zhou, Z.; Guo, Q.; Yan, Z.; Yao, Y.; Goodman, D. W., The 2-D growth of gold on single-layer graphene/Ru(0001): Enhancement of CO adsorption. Surface Science 2011, 605 (17), L47-L50.
7. Luo, M. F.; Chiang, C. I.; Shiu, H. W.; Sartale, S. D.; Kuo, C. C., Patterning Co nanoclusters on thin-film Al2O3/NiAl(100). Nanotechnology 2006, 17 (2), 360-366.
8. Hung, T.-C.; Liao, T.-W.; Liao, Z.-H.; Hsu, P.-W.; Cai, P.-Y.; Lee, H.; Lai, Y.-L.; Hsu, Y.-J.; Chen, H.-Y.; Wang, J.-H.; Luo, M.-F., Dependence on Size of Supported Rh Nanoclusters in the Decomposition of Methanol. ACS Catalysis 2015, 5 (7), 4276-4287.
9. Shrikrishna D. Sartale, H.-W. S., Ming-Han Ten, Won-Ru Lin, Meng-Fan Luo,Yin-Chang Lin, and Yao-Jane Hsu, Adsorption and Decomposition of Methanol on Gold Nanoclusters Supported on a Thin Film of Al2O3/NiAl(100). J. Phys. Chem. C. 2008, , (112), 2066-2073.
10. Hu, G. R.; Chao, C. S.; Shiu, H. W.; Wang, C. T.; Lin, W. R.; Hsu, Y. J.; Luo, M. F., Low-temperature decomposition of methanol on Au nanoclusters supported on a thin film of Al2O3/NiAl100. Phys Chem Chem Phys 2011, 13 (8), 3281-90.

Reference Chapter II
1. Slonczewski, J. C.; Weiss, P. R., Band Structure of Graphite. Physical Review 1958, 109 (2), 272-279.
2. Nguyen, T. N., A model system for carbohydrates interactions on single-crystalline Ru surface. 2015.
3. Martinez, J. I.; Merino, P.; Pinardi, A. L.; Gonzalo, O. I.; Lopez, M. F.; Mendez, J.; Martin-Gago, J. A., Role of the Pinning Points in epitaxial Graphene Moire Superstructures on the Pt(111) Surface. Sci Rep 2016, 6, 20354.
4. Stojanov, P.; Voloshina, E.; Dedkov, Y.; Schmitt, S.; Haenke, T.; Thissen, A., Graphene on Rh(111): Combined DFT, STM, and NC-AFM Studies. Procedia Engineering. Procedia Engineering 2014, 93, 8.
5. Bartelt, N. C.; McCarty, K. F., Graphene growth on metal surfaces. MRS Bulletin 2012, 37 (12), 1158-1165.
6. Tetlow, H.; Posthuma de Boer, J.; Ford, I. J.; Vvedensky, D. D.; Coraux, J.; Kantorovich, L., Growth of epitaxial graphene: Theory and experiment. Physics Reports 2014, 542 (3), 195-295.
7. Huang, L.; Xu, W.-Y.; Que, Y.-D.; Pan, Y.; Gao, M.; Pan, L.-D.; Guo, H.-M.; Wang, Y.-L.; Du, S.-X.; Gao, H.-J., The influence of annealing temperature on the morphology of graphene islands. Chinese Physics B 2012, 21 (8).
8. Katsnelson, M. I., Graphene: carbon in two dimensions. Materials Today 2007, 10 (1), 20-27.
9. Sutter, P.; Sadowski, J. T.; Sutter, E., Graphene on Pt(111): Growth and substrate interaction. Physical Review B 2009, 80 (24).
10. Ansari, A. S.; Chern, Z. Y.; Cai, P. Y.; Huang, Y. W.; Liao, G. J.; Wang, J. H.; Luo, M. F., Distinct dependence on size of Pt and Rh nanoclusters on graphene/Pt(111) in the decomposition of methanol-d4. J Chem Phys 2019, 151 (22), 224707.
11. Aliofkhazraei, M.; Ali, N.; Milne, W. I.; Ozkan, C. S.; Mitura, S.; Gervasoni, J. L., Graphene Science Handbook: Size-Dependent Properties. . CRC Press 2016, 105-206.
12. C. Heske, R. T., F. J. Himpsel, S. Kakar, L. J. Terminello,H. J. Weyer, E. L. Shirley, Band widening in graphite. Physical Review B 1999, 59, 7.
13. Preobrajenski, A. B.; Ng, M. L.; Vinogradov, A. S.; Mårtensson, N., Controlling graphene corrugation on lattice-mismatched substrates. Physical Review B 2008, 78 (7).
14. Kibler, L. A., Preparation and Characterization of Noble Metal Single Crystal Electrode Surfaces. 2003.
15. Donner, K.; Jakob, P., Structural properties and site specific interactions of Pt with the graphene/Ru(0001) moire overlayer. J Chem Phys 2009, 131 (16), 164701.
16. Yi, P.; Dong-Xia, S.; Hong-Jun, G., Formation of graphene on Ru(0001) surface. Chinese Physics 2007, 16, 11.
17. Cortés, R.; Acharya, D. P.; Ciobanu, C. V.; Sutter, E.; Sutter, P., Graphene on Ru(0001) Moiré Corrugation Studied by Scanning Tunneling Microscopy on Au/Graphene/Ru(0001) Heterostructures. The Journal of Physical Chemistry C 2013, 117 (40), 20675-20680.
18. Borca, B.; Barja, S.; Garnica, M.; Minniti, M.; Politano, A.; Rodriguez-García, J. M.; Hinarejos, J. J.; Farías, D.; Parga, A. L. V. d.; Miranda, R., Electronic and geometric corrugation of periodically rippled, self-nanostructured graphene epitaxially grown on Ru(0001). New Journal of Physics 2010, 12 (9).
19. Que, Y.; Xiao, W.; Fei, X.; Chen, H.; Huang, L.; Du, S. X.; Gao, H. J., Epitaxial growth of large-area bilayer graphene on Ru(0001). Applied Physics Letters 2014, 104 (9).
20. Pan, Y.; Zhang, H.; Shi, D.; Sun, J.; Du, S.; Liu, F.; Gao, H.-j., Highly Ordered, Millimeter-Scale, Continuous, Single-Crystalline Graphene Monolayer Formed on Ru (0001). Advanced Materials 2009, 21 (27), 2777-2780.
21. Moritz, W.; Wang, B.; Bocquet, M. L.; Brugger, T.; Greber, T.; Wintterlin, J.; Gunther, S., Structure determination of the coincidence phase of graphene on Ru(0001). Phys Rev Lett 2010, 104 (13), 136102.
22. Zhou, Z.; Gao, F.; Goodman, D. W., Deposition of metal clusters on single-layer graphene/Ru(0001): Factors that govern cluster growth. Surface Science 2010, 604 (13-14), L31-L38.
23. Martoccia, D.; Björck, M.; Schlepütz, C. M.; Brugger, T.; Pauli, S. A.; Patterson, B. D.; Greber, T.; Willmott, P. R., Graphene on Ru(0001): a corrugated and chiral structure. New Journal of Physics 2010, 12 (4).
24. Wang, B.; Bocquet, M. L.; Marchini, S.; Gunther, S.; Wintterlin, J., Chemical origin of a graphene moire overlayer on Ru(0001). Phys Chem Chem Phys 2008, 10 (24), 3530-4.
25. Martoccia, D.; Willmott, P. R.; Brugger, T.; Bjorck, M.; Gunther, S.; Schleputz, C. M.; Cervellino, A.; Pauli, S. A.; Patterson, B. D.; Marchini, S.; Wintterlin, J.; Moritz, W.; Greber, T., Graphene on Ru(0001): a 25 x 25 supercell. Phys Rev Lett 2008, 101 (12), 126102.
26. Voloshina, E. N.; Dedkov, Y. S.; Torbru¨gge, S.; Thissen, A.; Fonin, M., Graphene on Rh(111): Scanning tunneling and atomic force microscopies studie. APPLIED PHYSICS LETTERS 2012, 100, 241606 (
27. Blanc, N.; Coraux, J.; Vo-Van, C.; N’Diaye, A. T.; Geaymond, O.; Renaud, G., Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B 2012, 86 (23).
28. Meng, L.; Wu, R.; Zhang, L.; Li, L.; Du, S.; Wang, Y.; Gao, H. J., Multi-oriented moire superstructures of graphene on Ir(111): experimental observations and theoretical models. J Phys Condens Matter 2012, 24 (31), 314214.
29. N′Diaye, A. T.; Bleikamp, S.; Feibelman, P. J.; Michely, T., Two-dimensional Ir cluster lattice on a graphene moire on Ir(111). Phys Rev Lett 2006, 97 (21), 215501.
30. Loginova, E.; Nie, S.; Thürmer, K.; Bartelt, N. C.; McCarty, K. F., Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B 2009, 80 (8).
31. Merino, P.; Svec, M.; Pinardi, A. L.; Otero, G.; Martı´n-Gago, J. e. A., Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS. Nano 2011, 5 (7), 5627–5634.
32. Gao, M.; Pan, Y.; Huang, L.; Hu, H.; Zhang, L. Z.; Guo, H. M.; Du, S. X.; Gao, H. J., Epitaxial growth and structural property of graphene on Pt(111). Applied Physics Letters 2011, 98 (3).
33. Dahal, A.; Addou, R.; Sutter, P.; Batzill, M., Graphene monolayer rotation on Ni(111) facilitates bilayer graphene growth. Applied Physics Letters 2012, 100 (24).
34. Gamo, Y.; Nagashima, A.; Wakabayashi, M.; Terai, M.; Oshima, C., Atomic structure of monolayer graphite formed on Ni(111). Surface Science 1997, 374 (1), 61-64.
35. Rosei, R.; De Crescenzi, M.; Sette, F.; Quaresima, C.; Savoia, A.; Perfetti, P., Structure of graphitic carbon on Ni(111): A surface extended-energy-loss fine-structure study. Physical Review B 1983, 28 (2), 1161-1164.
36. Zhao, W.; Kozlov, S. M.; Höfert, O.; Gotterbarm, K.; Lorenz, M. P. A.; Viñes, F.; Papp, C.; Görling, A.; Steinrück, H.-P., Graphene on Ni(111): Coexistence of Different Surface Structures. The Journal of Physical Chemistry Letters 2011, 2 (7), 759-764.
37. Gao, L.; Guest, J. R.; Guisinger, N. P., Epitaxial graphene on Cu(111). Nano Lett 2010, 10 (9), 3512-6.
38. Murata, Y.; Starodub, E.; Kappes, B. B.; Ciobanu, C. V.; Bartelt, N. C.; McCarty, K. F.; Kodambaka, S., Orientation-dependent work function of graphene on Pd(111). Applied Physics Letters 2010, 97 (14).
39. Nie, S.; Bartelt, N. C.; Wofford, J. M.; Dubon, O. D.; McCarty, K. F.; Thürmer, K., Scanning tunneling microscopy study of graphene on Au(111): Growth mechanisms and substrate interactions. Physical Review B 2012, 85 (20).
40. Tonnoir, C.; Kimouche, A.; Coraux, J.; Magaud, L.; Delsol, B.; Gilles, B.; Chapelier, C., Induced superconductivity in graphene grown on rhenium. Phys Rev Lett 2013, 111 (24), 246805.
41. Miniussi, E.; Pozzo, M.; Baraldi, A.; Vesselli, E.; Zhan, R. R.; Comelli, G.; Mentes, T. O.; Nino, M. A.; Locatelli, A.; Lizzit, S.; Alfe, D., Thermal stability of corrugated epitaxial graphene grown on Re(0001). Phys Rev Lett 2011, 106 (21), 216101.
42. Vinogradov, N. A.; Zakharov, A. A.; Kocevski, V.; Rusz, J.; Simonov, K. A.; Eriksson, O.; Mikkelsen, A.; Lundgren, E.; Vinogradov, A. S.; Martensson, N.; Preobrajenski, A. B., Formation and structure of graphene waves on Fe(110). Phys Rev Lett 2012, 109 (2), 026101.
43. King, D. A.; Woodruff, D. P., Contributors to volume 8. In The Chemical Physics of Solid Surfaces, King, D. A.; Woodruff, D. P., Eds. Elsevier: 1997; Vol. 8, pp v-viii.
44. Wang, B.; Bocquet, M. L., Interfacial coupling in rotational monolayer and bilayer graphene on Ru(0001) from first principles. Nanoscale 2012, 4 (15), 4687-93.
45. Pan, Y.; Gao, M.; Huang, L.; Liu, F.; Gao, H. J., Directed self-assembly of monodispersed platinum nanoclusters on graphene Moiré template. Applied Physics Letters 2009, 95 (9).
46. Zhang, H.; Fu, Q.; Cui, Y.; Tan, D.; Bao, X., Fabrication of metal nanoclusters on graphene grown on Ru(0001). Chinese Science Bulletin 2009, 54 (14), 2446-2450.
47. Marchini, S.; Günther, S.; Wintterlin, J., Scanning tunneling microscopy of graphene on Ru(0001). Physical Review B 2007, 76 (7).
48. Wang, B.; Yoon, B.; Konig, M.; Fukamori, Y.; Esch, F.; Heiz, U.; Landman, U., Size-selected monodisperse nanoclusters on supported graphene: bonding, isomerism, and mobility. Nano Lett 2012, 12 (11), 5907-12.
49. Zhang, L. Z.; Du, S. X.; Sun, J. T.; Huang, L.; Meng, L.; Xu, W. Y.; Pan, L. D.; Pan, Y.; Wang, Y. L.; Hofer, W. A.; Gao, H. J., Growth Mechanism of Metal Clusters on a Graphene/Ru(0001) Template. Advanced Materials Interfaces 2014, 1 (3).
50. Liu, L.; Zhou, Z.; Guo, Q.; Yan, Z.; Yao, Y.; Goodman, D. W., The 2-D growth of gold on single-layer graphene/Ru(0001): Enhancement of CO adsorption. Surface Science 2011, 605 (17), L47-L50.
51. N′Diaye, A. T.; Gerber, T.; Busse, C.; Mysliveček, J.; Coraux, J.; Michely, T., A versatile fabrication method for cluster superlattices. New Journal of Physics 2009, 11 (10).
52. Kittel, C., Introduction to Solid State Physics, 8th Edition. 2005.
53. SIMOES, J. A. M.; BEAUCHAMP, J. L., Transition Metal-Hydrogen and Metal-Carbon Bond Strengths: The Keys to Catalysis. Wiley 1990, 21 (43).
54. Tzeli, D.; Mavridis, A., Electronic Structure of Cobalt Carbide, CoC. J. Phys. Chem. A 2006, 110 (28), 8952-8962.
55. Qin, H.; Chen, X.; Li, L.; Sutter, P. W.; Zhou, G., Oxidation-driven surface dynamics on NiAl(100). Proc Natl Acad Sci U S A 2015, 112 (2), E103-9.
56. Qin, H.; Sutter, P.; Zhou, G.; Jacobson, N., The Crystallization of Amorphous Aluminum Oxide Thin Films Grown on NiAl(100). Journal of the American Ceramic Society 2014, 97 (9), 2762-2769.
57. Franchy, R., Growth of thin, crystalline oxide, nitride and oxynitride films on metal and metal alloy surfaces. Surface Science Reports 2000, 38 (6), 195-294.
58. Ho, J.-Y., Adsorbate-induced restructuring in Au-Pt bimetallic nanoclusters on Al2O3NiAl(100). 2010.
59. Digne, M.; Sautet, P.; Raybaud, P.; Toulhoat, H.; Artacho⊥, E., Structure and Stability of Aluminum Hydroxides: A Theoretical Study. J. Phys. Chem. B. 2002, 106.
60. Luo, M. F.; Chiang, C. I.; Shiu, H. W.; Sartale, S. D.; Kuo, C. C., Patterning Co nanoclusters on thin-film Al2O3/NiAl(100). Nanotechnology 2006, 17 (2), 360-366.
61. Luo, M. F.; Chiang, C. I.; Shiu, H. W.; Sartale, S. D.; Wang, T. Y.; Chen, P. L.; Kuo, C. C., Growth of Co clusters on thin films Al2O3NiAl(100). J Chem Phys 2006, 124 (16), 164709.
62. Sartale, S. D.; Shiu, H.-W.; Wen, W.-H.; Luo, M.-F.; Lin, Y. C.; Hsu, Y.-J., Dehydrogenation of Cyclohexene on Platinum Nanoclusters on a Thin Film of Al2O3/NiAl(100). Catalysis Letters 2007, 119 (1), 95-100.
63. Sartale, S. D.; Shiu, H. W.; Ten, M. H.; Huang, J. Y.; Luo, M. F., Scanning tunneling microscopy study of growth of Pt nanoclusters on thin film Al2O3/NiAl(100). Surface Science 2006, 600 (22), 4978-4985.
64. Luo, M. F.; Lin, W. R.; Wen, W. H.; Chang, B. W., Methanol electro-oxidation and induced sintering on Pt nanoclusters supported on thin-film Al2O3/NiAl(100). Surface Science 2008, 602 (21), 3258-3265.
65. Luo, M. F.; Wen, W. H.; Lin, C. S.; Chiang, C. I.; Sartale, S. D.; Zei, M. S., Structures of Co and Pt nanoclusters on a thin film of Al2O3/NiAl(100) from reflection high-energy electron diffraction and scanning-tunnelling microscopy. Surface Science 2007, 601 (10), 2139-2146.
66. Chao, C.-S.; Li, Y.-D.; Hsu, B.-W.; Lin, W.-R.; Hsu, H.-C.; Hung, T.-C.; Wang, C.-C.; Luo, M.-F., Two-Channel Decomposition of Methanol on Pt Nanoclusters Supported on a Thin Film of Al2O3/NiAl(100). The Journal of Physical Chemistry C 2013, 117 (11), 5667-5677.
67. Lee, H.; Liao, Z. H.; Hsu, P. W.; Hung, T. C.; Wu, Y. C.; Lin, Y.; Wang, J. H.; Luo, M. F., Surface structures and compositions of Au-Rh bimetallic nanoclusters supported on thin-film Al2O3/NiAl(100) probed with CO. J Chem Phys 2017, 147 (4), 044704.
68. Hung, T.-C.; Liao, T.-W.; Liao, Z.-H.; Hsu, P.-W.; Cai, P.-Y.; Lee, H.; Lai, Y.-L.; Hsu, Y.-J.; Chen, H.-Y.; Wang, J.-H.; Luo, M.-F., Dependence on Size of Supported Rh Nanoclusters in the Decomposition of Methanol. ACS Catalysis 2015, 5 (7), 4276-4287.
69. Hung, T.-C.; Liao, T.-W.; Liao, Z.-H.; Hsu, P.-W.; Cai, P.-Y.; Lu, W.-H.; Wang, J.-H.; Luo, M.-F., Dependence on size of supported Rh nanoclusters for CO adsorption. RSC Advances 2016, 6 (5), 3830-3839.
Reference Chapter III
1. Kolasinski, D. K. W., Surface Science: Foundations Of Catalysis And Nanoscience, Second Edition. 2008.
2. Hudson, J. B., Surface Science: An Introduction. 1998.
3. Gatzen, H. H.; Saile, V.; Leuthold, J., Micro and Nano Fabrication. 2015.
4. Lüth, H., Solid Surfaces, Interfaces and Thin Films. 2015.
5. Hsu, B.-W., RHEED Studies on Structures of Rh and Rh-Au Bimetallic Nanoclusters on Thin Film Al2O3/NiAl. 2016.
6. Hsiao, K., STM and RHEED Studies of Vanadium Nanoclusters Grown on the θ-Al2O3/NiAl(100). 2018.
7. Hucknall, D. J., Vacuum Technology and Applications. 1991.
8. Franchy, R., Growth of thin, crystalline oxide, nitride and oxynitride films on metal and metal alloy surfaces. Surface Science Reports 2000, 38 (6), 195-294.
9. Hasegawa, S., Reflection High-Energy Electron Diffraction. 2012.
10. Kittel, C., Introduction to Solid State Physics, 8th Edition. 2005.
11. Zei, B. M. S.; Lei, T.; Ertl, G., Spontaneous and Electrodeposition of Pt on Ru(0001). Z. Phys. Chem. 2003, 217.
12. Ingle, N. J. C.; Yuskauskas, A.; Wicks, R.; Paul, M.; Leung, S., The structural analysis possibilities of reflection high energy electron diffraction. Journal of Physics D: Applied Physics 2010, 43 (13).
13. Zei, M. S.; Lin, C. S.; Wen, W. H.; Chiang, C. I.; Luo, M. F., Growth of Al2O3 thin films on NiAl(100) by gas-phase oxidation and electro-oxidation. Surface Science 2006, 600 (9), 1942-1951.
14. Luo, M. F.; Wen, W. H.; Lin, C. S.; Chiang, C. I.; Sartale, S. D.; Zei, M. S., Structures of Co and Pt nanoclusters on a thin film of Al2O3/NiAl(100) from reflection high-energy electron diffraction and scanning-tunnelling microscopy. Surface Science 2007, 601 (10), 2139-2146.
15. Ichimiya, A.; Cohen, P. I., Reflection High-Energy Electron Diffraction. Cambridge University Press: Cambridge, 2004.
16. Gottardi, S., Designing molecular nano-architectures on metals and on graphene. 2015.
17. Ternes, M., scanning tunneling spectroscopy at the single atom scale. 2006.
18. Dehlinger, M., XAS-XEOL and XRF spectroscopies using NearField Microscope probes for high-resolution photon collection. 2013.
19. Hoffman, STM More Technical Details. 2010.
20. Wang, W., Scanning Tunneling Microscopy. 2009.
21. Tersoff, J.; Hamann, D. R., Theory of the scanning tunneling microscope. Phys Rev B Condens Matter 1985, 31 (2), 805-813.
22. Fischer, Ø.; Kugler, M.; Maggio-Aprile, I.; Berthod, C.; Renner, C., Scanning tunneling spectroscopy of high-temperature superconductors. Reviews of Modern Physics 2007, 79 (1), 353-419.
23. Technology, R., User’s guide of RHK-UHV 300. 2015.
24. Kolmakov, A.; Goodman, W., In situ Scanning Tunneling Microscopy of Individual Supported Metal Nanoclusters at Elevated Pressures and Temperature. RHK Technology Inc. 2014.
25. Ju, B. F.; Chen, Y. L.; Ge, Y., The art of electrochemical etching for preparing tungsten probes with controllable tip profile and characteristic parameters. Rev Sci Instrum 2011, 82 (1), 013707.
26. Bai, C., Scanning Tunneling Microscopy and Its Application. 2000.
27. Lee, H.; Liao, Z. H.; Hsu, P. W.; Hung, T. C.; Wu, Y. C.; Lin, Y.; Wang, J. H.; Luo, M. F., Surface structures and compositions of Au-Rh bimetallic nanoclusters supported on thin-film Al2O3/NiAl(100) probed with CO. J Chem Phys 2017, 147 (4), 044704.
28. Gilarowski, G.; Niehus, H., Intermixing and subsurface alloy formation: Ir on Cu(100). Surface Science 1999, 436, 107–120.
29. Pope, T. D.; Griffiths, K.; Norton, P. R., Surface and interfacial alloys of Pd with Cu( 100) : structure, photoemission and CO chemisorption. Surface Science 1994, 306.

Reference Chapter VI
1. Zei, M. S., Epitaxial Growth of Ru and Pt on Pt(111) and Ru(0001), Respectively: A Combined AES and RHEED Study. Journal of Nanotechnology 2010, 2010, 1-12.
2. Wang, B.; Bocquet, M. L.; Marchini, S.; Gunther, S.; Wintterlin, J., Chemical origin of a graphene moire overlayer on Ru(0001). Phys Chem Chem Phys 2008, 10 (24), 3530-4.
3. Ansari, A. S.; Chern, Z. Y.; Cai, P. Y.; Huang, Y. W.; Liao, G. J.; Wang, J. H.; Luo, M. F., Distinct dependence on size of Pt and Rh nanoclusters on graphene/Pt(111) in the decomposition of methanol-d4. J Chem Phys 2019, 151 (22), 224707.
4. Rutter, G. M.; Crain, J. N.; Guisinger, N. P.; Li, T.; First, P. N.; Stroscio, J. A., Scattering and interference in epitaxial graphene. Science 2007, 317 (5835), 219-22.
5. Pan, Y.; Zhang, L.; Huang, L.; Li, L.; Meng, L.; Gao, M.; Huan, Q.; Lin, X.; Wang, Y.; Du, S.; Freund, H.-J.; Gao, H.-J., Construction of 2D Atomic Crystals on Transition Metal Surfaces: Graphene, Silicene, and Hafnene. Small 2014, 10 (11), 2215-2225.
6. Preobrajenski, A. B.; Ng, M. L.; Vinogradov, A. S.; Mårtensson, N., Controlling graphene corrugation on lattice-mismatched substrates. Physical Review B 2008, 78 (7).
7. Wang, B.; Bocquet, M. L., Interfacial coupling in rotational monolayer and bilayer graphene on Ru(0001) from first principles. Nanoscale 2012, 4 (15), 4687-93.
8. Fei, X.; Zhang, L.; Xiao, W.; Chen, H.; Que, Y.; Liu, L.; Yang, K.; Du, S.; Gao, H.-J., Structural and Electronic Properties of Pb- Intercalated Graphene on Ru(0001). The Journal of Physical Chemistry C 2015, 119 (18), 9839-9844.
9. Chen, C.; Avila, J.; Arezki, H.; Nguyen, V. L.; Shen, J.; Mucha-Kruczynski, M.; Yao, F.; Boutchich, M.; Chen, Y.; Lee, Y. H.; Asensio, M. C., Retraction Note: Large local lattice expansion in graphene adlayers grown on copper. Nat Mater 2018, 17 (11), 1048.
10. N′Diaye, A. T.; Coraux, J.; Plasa, T. N.; Busse, C.; Michely, T., Structure of epitaxial graphene on Ir(111). New Journal of Physics 2008, 10 (4).
11. Nie, S.; Bartelt, N. C.; Wofford, J. M.; Dubon, O. D.; McCarty, K. F.; Thürmer, K., Scanning tunneling microscopy study of graphene on Au(111): Growth mechanisms and substrate interactions. Physical Review B 2012, 85 (20).
12. Müller, F.; Sachdev, H.; Hüfner, S.; Pollard, A. J.; Perkins, E. W.; Russell, J. C.; Beton, P. H.; Gsell, S.; Fischer, M.; Schreck, M.; Stritzker, B., How Does Graphene Grow? Easy Access to Well-Ordered Graphene Films. Small 2009, 5 (20), 2291-2296.
13. Martoccia, D.; Willmott, P. R.; Brugger, T.; Bjorck, M.; Gunther, S.; Schleputz, C. M.; Cervellino, A.; Pauli, S. A.; Patterson, B. D.; Marchini, S.; Wintterlin, J.; Moritz, W.; Greber, T., Graphene on Ru(0001): a 25 x 25 supercell. Phys Rev Lett 2008, 101 (12), 126102.
14. Cai, P.-Y., Methanol Decomposition on Pt Nanoclusters Supported by Graphene on Pt(111): A Combined RHEED, IRAS and TPD Study. (Master Thesis). National Central University, Taiwan. 2016.
15. Yi, P.; Dong-Xia, S.; Hong-Jun, G., Formation of graphene on Ru(0001) surface. Chinese Physics 2007, 16, 11.
16. Politano, A.; Chiarello, G., Probing the Young’s modulus and Poisson’s ratio in graphene/metal interfaces and graphite: a comparative study. Nano Research 2015, 8 (6), 1847-1856.
17. Iannuzzi, M.; Kalichava, I.; Ma, H.; Leake, S. J.; Zhou, H.; Li, G.; Zhang, Y.; Bunk, O.; Gao, H.; Hutter, J.; Willmott, P. R.; Greber, T., Moiré beatings in graphene on Ru(0001). Physical Review B 2013, 88 (12).
18. Kalichava, I., Surface X-ray Diffraction Studies of Graphene on Ruthenium and Hexagonal Boron. 2014.
19. Jiang, D. E.; Du, M. H.; Dai, S., First principles study of the graphene/Ru(0001) interface. J Chem Phys 2009, 130 (7), 074705.
20. Luo, M. F.; Wen, W. H.; Lin, C. S.; Chiang, C. I.; Sartale, S. D.; Zei, M. S., Structures of Co and Pt nanoclusters on a thin film of Al2O3/NiAl(100) from reflection high-energy electron diffraction and scanning-tunnelling microscopy. Surface Science 2007, 601 (10), 2139-2146.
21. Hsu, B.-W., RHEED Studies on Structures of Rh and Rh-Au Bimetallic Nanoclusters on Thin Film Al2O3/NiAl. 2016.
22. Zhou, Z.; Gao, F.; Goodman, D. W., Deposition of metal clusters on single-layer graphene/Ru(0001): Factors that govern cluster growth. Surface Science 2010, 604 (13-14), L31-L38.
23. Wang, B.; Bocquet, M.-L., Monolayer Graphene and h-BN on Metal Substrates as Versatile Templates for Metallic Nanoclusters. The Journal of Physical Chemistry Letters 2011, 2 (18), 2341-2345.
24. Zhang, L. Z.; Du, S. X.; Sun, J. T.; Huang, L.; Meng, L.; Xu, W. Y.; Pan, L. D.; Pan, Y.; Wang, Y. L.; Hofer, W. A.; Gao, H. J., Growth Mechanism of Metal Clusters on a Graphene/Ru(0001) Template. Advanced Materials Interfaces 2014, 1 (3).
25. Liu, X.; Han, Y.; Evans, J. W.; Engstfeld, A. K.; Behm, R. J.; Tringides, M. C.; Hupalo, M.; Lin, H.-Q.; Huang, L.; Ho, K.-M.; Appy, D.; Thiel, P. A.; Wang, C.-Z., Growth morphology and properties of metals on graphene. Progress in Surface Science 2015, 90 (4), 397-443.
26. Huang, L.; Pan, Y.; Pan, L.; Gao, M.; Xu, W.; Que, Y.; Zhou, H.; Wang, Y.; Du, S.; Gao, H. J., Intercalation of metal islands and films at the interface of epitaxially grown graphene and Ru(0001) surfaces. Applied Physics Letters 2011, 99 (16).
27. Alonso-Lanza, T.; Ayuela, A.; Aguilera-Granja, F., Substitutional 4d and 5d impurities in graphene. Phys Chem Chem Phys 2016, 18 (31), 21913-20.
28. Hu, G. R.; Chao, C. S.; Shiu, H. W.; Wang, C. T.; Lin, W. R.; Hsu, Y. J.; Luo, M. F., Low-temperature decomposition of methanol on Au nanoclusters supported on a thin film of Al2O3/NiAl100. Phys Chem Chem Phys 2011, 13 (8), 3281-90.
29. Hsiao, K., STM and RHEED Studies of Vanadium Nanoclusters Grown on the θ-Al2O3/NiAl(100). 2018.
30. Luo, M. F.; Chiang, C. I.; Shiu, H. W.; Sartale, S. D.; Kuo, C. C., Patterning Co nanoclusters on thin-film Al2O3/NiAl(100). Nanotechnology 2006, 17 (2), 360-366.
31. Wang, C. T.; Lin, C. W.; Hsia, C. L.; Chang, B. W.; Luo, M. F., Under-surface observation of thin-film alumina on NiAl(100) with scanning tunneling microscopy. Thin Solid Films 2012, 520 (11), 3952-3959.
32. Zei, M. S.; Lin, C. S.; Wen, W. H.; Chiang, C. I.; Luo, M. F., Growth of Al2O3 thin films on NiAl(100) by gas-phase oxidation and electro-oxidation. Surface Science 2006, 600 (9), 1942-1951.
33. Hung, T.-C.; Liao, T.-W.; Liao, Z.-H.; Hsu, P.-W.; Cai, P.-Y.; Lee, H.; Lai, Y.-L.; Hsu, Y.-J.; Chen, H.-Y.; Wang, J.-H.; Luo, M.-F., Dependence on Size of Supported Rh Nanoclusters in the Decomposition of Methanol. ACS Catalysis 2015, 5 (7), 4276-4287.
34. Shrikrishna D. Sartale, H.-W. S., Ming-Han Ten, Won-Ru Lin, Meng-Fan Luo,Yin-Chang Lin, and Yao-Jane Hsu, Adsorption and Decomposition of Methanol on Gold Nanoclusters Supported on a Thin Film of Al2O3/NiAl(100). J. Phys. Chem. C. 2008, , (112), 2066-2073.
35. Worren, T.; Højrup Hansen, K.; Lægsgaard, E.; Besenbacher, F.; Stensgaard, I., Copper clusters on Al2O3/NiAl(110) studied with STM. Surface Science 2001, 477 (1), 8-16.
36. Kittel, C., Introduction to Solid State Physics, 8th Edition. 2005.

指導教授 羅夢凡(Meng-Fan Luo) 審核日期 2020-5-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明