博碩士論文 995401018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:142 、訪客IP:3.144.31.64
姓名 陳弘朕(Hung-Chen Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 38-GHz相位天線陣列設計與資料傳輸率提升研究
(Design of 38-GHz Phased Antenna Array with Sidelobe Suppression for Data-rate Enhancement)
相關論文
★ 利用缺陷型接地結構之雙頻微型平面倒F天線設計★ 應用於第三代行動電話之倒F天線設計
★ 使用寄生元件之平面式倒F型雙頻天線設計★ 利用寄生元件之平面式倒 F 型三頻天線設計
★ 無線通訊之三頻天線設計★ 無線通訊之雙頻與三頻槽孔型天線設計
★ 應用於智慧型行動裝置之LTE/WWAN多頻單極天線設計★ 應用於行動手持裝置之LTE/WWAN天線設計
★ 利用背腔式槽孔線結構之多頻段天線設計★ 利用缺陷地面共振電路之介質量測技術
★ 應用於藍芽與全球衛星定位系統之電抗性負載型雙頻槽孔天線★ 帶通圓形極化頻率選擇面之設計
★ 啞鈴型缺陷地面之介質量測電路分析與設計★ 雙頻圓極化微波極化器設計
★ 利用微小共振電路之多頻段天線設計★ 應用於X-band平面吸波器之薄型負載電路設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本博士論文在毫米波陣列提出兩種天線設計架構,在第二章中,提出應用於37/39 GHz 頻段的16組串聯饋入毫米波陣列,為了改進串聯饋入陣列天線的阻抗頻寬,使用傳輸線深入微帶貼片天線饋入端調整匹配,並在末端兩個微帶貼片天線採用截角以增加第二個模態。由於微帶貼片天線採用截角會產生橢圓極化,造成交叉極化劣化的影響,因此在陣列的設計上,在兩組串聯饋送陣列間採用鏡對稱排列。由模擬與量測結果驗證對於降低交叉極化確實有顯著改善之效果。16組串聯饋入毫米波陣列實作採用厚度10 mil RO5880作為微波基板。在陣列的後端,結合16個37/39 GHz 主動收/發模組,進行振幅與相位調控,藉以達到低旁波抑制與40度波束掃描涵蓋之功能。由實驗的結果驗證所設計之38 GHz串聯饋入陣列天線,透過振幅與相位補償可達到阻抗頻寬提升到8%、增益21 dBi、旁波抑制25 dB及交叉極化低於20 dB的良好場型特性。
本論文在第三章中,探討提出旁波抑制提升技術與旁波抑制對於多波束同時傳輸資料量的影響。在第三章中設計3組應用於37/39 GHz 頻段的毫米波微帶貼面次陣列,每個次陣列包含24組微帶貼片天線,在陣列的後端,結合24個37/39 GHz 主動收/發模組,藉以調控次陣列的場型與掃描方向。為了提高增益、降低波束寬與增加旁波抑制,相較於傳統矩形排列方式,提出空間數量權重優化之鑽石形三角排列方式,此排列方式增加天線有效輻射面積與增加旁波抑制由13 dB改善到17.9 dB。為了進一步改善旁波抑制,採用調適零點的方式,在多波束干擾的方向設計零點抑制旁波干擾。由本文提出的演算法經過模擬與量測驗證可達到旁波抑制35 dB的效果。透過NI的毫米波收/發系統在傳輸量進行有/無旁波抑制的量測比對,量測發現在多波束採用旁波抑制35 dB可達到兩組波束同時傳輸7 Gbps的效果。第四章為本文提出的兩種毫米波陣列之設計結論,後續將朝向毫米波多波束傳輸持續進行精進。
摘要(英) In this dissertation, two type millimeter-wave antenna array for Millimetre-wave beamforming applications are presented. In Chapter II, a novel series-fed microstrip patch array antenna for 37/39 GHz beamforming is proposed. To improve the antenna bandwidth, two of the patches are modified with truncated corners in the diagonal direction. This truncation generates two degenerate resonances which result in a flatten frequency response of the input impedance. Then, the recessed microstrip feeds for the other two patches are designed to yield a proper current distribution for radiation while maintaining minimal return loss, wide bandwidth, and low sidelobes. Though the individual patch antenna is elliptically polarized due to the truncated corners, a phased array with linear polarization can still be obtained by alternately deploying left-handed and right-handed elliptically polarized patches. For validation of the proposed design, an array is fabricated with 16 elements on a substrate with 10 mil thickness and r =2.2. The beamforming capability of the proposed array is also demonstrated. The experiment results agree well with the simulation and show that the antenna gain and the return loss bandwidth can be more than 21 dBi and 8%, respectively.
The second part of the dissertation focuses on sidelobe suppression for data-rate enhancement. In Chapter III, a design of 38-GHz planar phased patch array with sidelobe suppression for data-rate enhancement is proposed in the paper. The proposed array is formed of three 24-element subarrays of patches. Each patch has its own transmit/receive modules (TRM) consisting of digitally controlled attenuator and phase shifter. In order to achieve high data-rate communications, the noise, especially due to the undesired signals received from the sidelobes, should be reduced with high sidelobe suppression of subarray. The sidelobe suppression of the proposed subarray is first improved to 17.9 dB with a diamond-shaped aperture, and then better than 35 dB with a tapered radiation power distribution. The excellent sidelobe suppression of the antenna array is essential for the beam-division multiplexing applications when the signal sources are close to each other. The proposed design is validated experimentally, including the data-rate measurements showing that the 7-Gbps data transmission can be achieved with sufficient sidelobe suppression of the proposed design.
Finally, a summary of the research results and future work are concluded in Chapter IV.
關鍵字(中) ★ 旁波抑制
★ 相位天線陣列
關鍵字(英) ★ Sidelobe Suppression
★ Phased Antenna Array
論文目次 摘要 i
ABSTRACT ii
致謝 iv
TABLE OF CONTENTS v
LIST OF FIGURES vii
LIST OF TABLES x
I. INTRODUCTION 1
1.1 Motivation and Application 1
1.2 Literature Survey 2
1.3 Organization of the Dissertation 5
II. Design of Series-Fed Bandwidth-Enhanced Microstrip Antenna Array for Millimetre-Wave Beamforming Applications 7
2.1 Introduction 7
2.2 Bandwidth enhanced series-fed microstrip patches 7
2.3 Array design to reduce cross-polarization 13
2.4 Beam forming simulation and experiment results 15
2.5 Conclusion 27
III. Millimetre-Wave Planar Phased Patch Array with Sidelobe Suppression for High Data-rate Transmission 28
3.1 Introduction 28
3.2 Antenna array design and simulation 29
3.3 Array pattern and data-rate measurement results 36
3.4 Conclusion 41
IV. CONCLUSION AND FUTURE WORKS 42
BIBLIOGRAPHY 43
PUBLICATION LIST 47

參考文獻 [1] Rappaport, T.S., Sun, S., Mayzus, R., Zhao H., Azar, Y., Wang, K., Wong, G.N., Schulz, J.K., Samimi, M., Gutierrez, F, “Millimeter wave mobile communications for 5G cellular: It will work! ,” IEEE Access, 2013, 1, (5), pp. 335–349.
[2] Roh, W., Seol, J.-Y., Park, J., Lee, B., Lee, J. Kim, Y., Cho, J., Cheun, K., Aryanfar, F, “Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results,” IEEE Commun. Mag., 2014, 52, (2), pp. 106–113.
[3] Ghosh, A., Thomas, T.A., Cudak, M.C., Ratasu, R., Moorut, P., Vook, F.W., Rappaport, T.S. MacCartney, G.R., Sun, S., Nie, S, “Milimeter-wave enhanced local area systems: A high-data-rate approach for future wireless networks,” IEEE J. Sel. Areas Commun., 2014, 32, (6), pp. 1152–1163.
[4] Pi, Z., Choi, J., Heath, R.W, “Millimeter-wave Gbps broadband evolution towards 5G: Fixed access and backhaul,” IEEE Commun. Mag., 2016, 54, (4), pp. 138–144.
[5] Resolution 238, “Studies on frequency-related matters for International Mobile Telecommunications identification including possible additional allocations to the mobile services on a primary basis in portions of the frequency range between 24.25 and 86 GHz for the future development of IMT for 2020 and beyond, ” ITU, WRC-15, 2015.
[6] FCC, “Use of spectrum bands above 24 GHz for mobile radio, ” 2015.
[7] Zhou, H., Aryanfar, F, “A Ka-band patch antenna array with improved circular polarization,” IEEE AP-S Int. Symp., Orlando, FL, July 2013, pp. 225–226.
[8] Hong, W., Baek, K., Lee Y., Kim, Y. G, “Design and analysis of a low-profile 28 GHz beam steering antenna solution for future 5G cellular applications, ” IEEE MTT-S Int. Microw. Symp., Tampa, FL, June 2014, pp. 1–4.
[9] Ojaroudiparchin, N., Shen, M., Zhang, S., Pedersen, G. F, “A switchable 3D-coverage-phased array antenna package for 5G mobile terminals,” IEEE Antennas and Wirel. Propag. Lett., 2016, 15, (11), pp. 1747–1750.
[10] Ali, M.M., Sebak, A.R, “Design of compact millimeter wave massive MIMO dual-band (28/38 GHz) antenna array for future 5G communication systems, ” Int. Symp. Antenna Tech. Appl. Electromagn., Montreal, Canada, July 2016, pp. 1–4.
[11] Khalily, M., Tafazolli, R., Rahman, T.A., Kamarudin, M. R, “Design of phased arrays of series-Fed patch antennas with reduced number of controllers for 28-GHz mm-wave applications,” IEEE Antennas and Wirel. Propag Lett., 2016,15, (4), pp. 1305–1308.
[12] Chu, H., Guo, Y.X. , “A filtering dual-polarized antenna subarray targeting for base stations in millimeter-wave 5G wireless communications, ” IEEE Trans. Compon., Packag., Manuf. Technol., 2017, 7, (6), pp. 964–973.
[13] Tuan-Yung Han, “Series-Fed Microstrip Array Antenna with Circular Polarization,” International Journal of Antennas and Propagation, Article ID 681431, Volume 2012.
[14] Ku, B.H., Schmalenber, P., Inac, O., Gurbuz, O.D., Lee, J.S., Shizaki, K., Rebeiz, G.M, “A 77–81 16-element phased-array receiver with ±50o beam scanning for advanced automotive radar, ” IEEE Trans. Microw. Theory Tech., 2014, 62, (11), pp. 2823–2832.
[15] Krishna, S., Mishra, G., Sharma, S.K, “A series fed planar microstrip patch array antenna with 1D beam steering for 5G spectrum massive MIMO applications,” 2018 IEEE Radio and Wirel. Symp., Anaheim, CA, Mar. 2018, pp. 209–212.
[16] Yuan, T., Yuan, N., Li, L.-W, “A novel series-fed taper antenna array design,” IEEE Antennas and Wirel. Propag. Lett., 2008, 7, (7), pp. 362–365.
[17] V. Semkin, F. Ferrero, A. Bisognin, J. Ala-Laurinaho, C. Luxey, F. Devillers, and A. V. Räisänen , “Beam Switching Conformal Antenna Array for mm-Wave Communications, ” IEEE Antennas and Wirel. Propag. Lett., VOL. 15, 2016
[18] Carver, K.R., Mink, J.W, “Microstrip antenna technology,” IEEE Trans. Antennas Propag., 1981, AP-29, (1), pp. 2–24.
[19] James, J.R., Hall, P.S, , “Handbook of microstrip antenna,” 1989.
[20] B. Sadhu1 et al., “A 28GHz 32-Element Phased-Array Transceiver IC with Concurrent Dual Polarized Beams and 1.4 Degree Beam-Steering Resolution for 5G Communication,” IEEE International Solid-State Circuits Conference, Feb. 2017.
[21] K. Kibaroglu et al., “An Ultra Low-Cost 32-Element 28 GHz Phased-Array Transceiver with 41 dBm EIRP and 1.0-1.6 Gbps 16-QAM Link at 300 Meters, ” IEEE Radio Frequency Integrated Circuits symposium. June 2017.
[22] Xinyu Gao, Linglong Dai, and Akbar M. Sayeed, “Low RF-Complexity technologies to enable millimeter-wave MIMO with large antenna array for 5G wireless communications,” IEEE Communications Magazine, April. 2018.
[23] H.L.Van Trees, “Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory,” NewYork, NY,USA:Wiley, 2002,pp.1–12.
[24] R.L.Haupt, “Antenna Arrays: A Computational Approach,” Hoboken, NJ, USA:Wiley, 2010,pp.156–176;484–515.
[25] M. A. Sarker, M. S. Hossain, and M. S. Masud, “Robust beamforming synthesis technique for low side lobe level using Taylor excited antenna array,” International Conference on Electrical, Computer & Telecommunication Engineering, Dec. 2016, pp. 1–4.
[26] Ovidio Mario Bucci, M. D′Urso, T. Isernia, P. Angeletti , and G. Toso, “Deterministic synthesis of uniform amplitude sparse arrays via new density taper techniques,” IEEE Trans. Antennas Propag, vol.58,pp.1949–1958,2010.
[27] A. F. Morabito, A. D. Carlo, L. D. Donato, T. Isernia, and G. Sorbello, “Extending spectral factorization to array pattern synthesis including sparseness, mutual coupling, and mounting platform effects,” IEEE Trans. Antennas Propag, vol. 67, n. 7, pp. 4548 – 4559, 2019.
[28] P. Rocca, R. L. Haupt, and A. Massa, “Interference suppression in uniform linear arrays through a dynamic thinning strategy,” IEEE Trans. Antennas Propag, vol. 59, no. 12, Dec. 2011.
[29] Ioannis P. Gravas, Zaharias D. Zaharis, Traianos V. Yioultsis, Pavlos I. Lazaridis, and Thomas D. Xenos, “Adaptive beamforming with sidelobe suppression by placing extra radiation pattern nulls,” IEEE Trans. Antennas Propag, vol. 67 no. 6, 2019.
[30] Giulia Buttazzoni and Roberto Vescovo, “Density tapering of linear arrays radiating pencil beams: a new extremely fast Gaussian approach,” IEEE Trans. Antennas Propag, vol. 65 no. 12, Dec. 2017.
[31] Rinkee Chopra and Girish Kumar, “Series-fed binomial microstrip arrays for extremely low sidelobe level,” IEEE Trans. Antennas Propag, vol. 67 no. 6, June. 2019.
[32] Haneishi, M., Nambara, T., Yoshida, S, “Study on ellipticity properties of single-feed type circularly polarised microstrip antennas,” Electron Lett., 1982, 18, (5), 191–193
[33] Gao, S., Luo, Q., Zhu, F, “Circularly polarized antenna,” John Wiley & Sons, 2014.
[34] Derneryd, A.G, “Linearly polarized microstrip antennas,” IEEE Trans. Antennas Propag., 1976, AP-24, (11), pp. 846–851
[35] Metzler, T, “Microstrip series arrays,” IEEE Trans. Antennas Propag., 1981, AP-29, (1), pp. 174–178.
[36] Jones, B.B., Chow, F.Y.M., Seeto, A.W, “The synthesis of shaped patterns with series-fed microstrip patch arrays,” IEEE Trans. Antennas Propag., 1982, AP-30, (6), pp. 1206–1212.
[37] Babas, D.G., Sahalos, J.N, “Synthesis method of series-fed microstrip antenna arrays,” Electron. Lett., 2007, 43, (2), 78–80.
[38] Sengupta, S., Jackson, D.R., Long, S.A, “A method for analyzing a linear series-fed rectangular microstip array,” IEEE Trans. Antennas Propag., 2015, 63, (8), pp. 3731–3736.
[39] Mailloux, R.J., ‘Phased array antenna handbook’ Artech House, 2005.
[40] Orchard, H.J., Elliott, Stern, G.J, “Optimising the synthesis of shaped antenna patterns,” IET Proc. H, 1985, 132, (1), pp. 63–68.
[41] Patton, W.T., Yorinks, L.H, “Near-field alignment of phased array antennas,” IEEE Trans. Antennas Propag., 1999, 47, (3), pp. 584–591.
[42] “TGS4302 datasheet,” https://www.qorvo.com/products/p/TGS4302
[43] “TGP2102 datasheet,” https://www.qorvo.com/products/p/TGP2102
[44] “Hmc939datasheet,”https://www.analog.com/media/en/technical-documentation/data-sheets/hmc939chip
[45] Ansoft HFSS ver. 14, Ansoft Corporation, Canonsburg, PA, 2010.
[46] NSI-MI Vertical Planar Near-field System, http://www.nsi-mi.com/literature /NSI-400V-23x22
[47] National Instruments Millimeter-Wave Transceiver System, http://www.ni.com/sdr/mmwave/
指導教授 丘增杰(Tsenchieh Chiu) 審核日期 2020-1-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明