參考文獻 |
[1] Rappaport, T.S., Sun, S., Mayzus, R., Zhao H., Azar, Y., Wang, K., Wong, G.N., Schulz, J.K., Samimi, M., Gutierrez, F, “Millimeter wave mobile communications for 5G cellular: It will work! ,” IEEE Access, 2013, 1, (5), pp. 335–349.
[2] Roh, W., Seol, J.-Y., Park, J., Lee, B., Lee, J. Kim, Y., Cho, J., Cheun, K., Aryanfar, F, “Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results,” IEEE Commun. Mag., 2014, 52, (2), pp. 106–113.
[3] Ghosh, A., Thomas, T.A., Cudak, M.C., Ratasu, R., Moorut, P., Vook, F.W., Rappaport, T.S. MacCartney, G.R., Sun, S., Nie, S, “Milimeter-wave enhanced local area systems: A high-data-rate approach for future wireless networks,” IEEE J. Sel. Areas Commun., 2014, 32, (6), pp. 1152–1163.
[4] Pi, Z., Choi, J., Heath, R.W, “Millimeter-wave Gbps broadband evolution towards 5G: Fixed access and backhaul,” IEEE Commun. Mag., 2016, 54, (4), pp. 138–144.
[5] Resolution 238, “Studies on frequency-related matters for International Mobile Telecommunications identification including possible additional allocations to the mobile services on a primary basis in portions of the frequency range between 24.25 and 86 GHz for the future development of IMT for 2020 and beyond, ” ITU, WRC-15, 2015.
[6] FCC, “Use of spectrum bands above 24 GHz for mobile radio, ” 2015.
[7] Zhou, H., Aryanfar, F, “A Ka-band patch antenna array with improved circular polarization,” IEEE AP-S Int. Symp., Orlando, FL, July 2013, pp. 225–226.
[8] Hong, W., Baek, K., Lee Y., Kim, Y. G, “Design and analysis of a low-profile 28 GHz beam steering antenna solution for future 5G cellular applications, ” IEEE MTT-S Int. Microw. Symp., Tampa, FL, June 2014, pp. 1–4.
[9] Ojaroudiparchin, N., Shen, M., Zhang, S., Pedersen, G. F, “A switchable 3D-coverage-phased array antenna package for 5G mobile terminals,” IEEE Antennas and Wirel. Propag. Lett., 2016, 15, (11), pp. 1747–1750.
[10] Ali, M.M., Sebak, A.R, “Design of compact millimeter wave massive MIMO dual-band (28/38 GHz) antenna array for future 5G communication systems, ” Int. Symp. Antenna Tech. Appl. Electromagn., Montreal, Canada, July 2016, pp. 1–4.
[11] Khalily, M., Tafazolli, R., Rahman, T.A., Kamarudin, M. R, “Design of phased arrays of series-Fed patch antennas with reduced number of controllers for 28-GHz mm-wave applications,” IEEE Antennas and Wirel. Propag Lett., 2016,15, (4), pp. 1305–1308.
[12] Chu, H., Guo, Y.X. , “A filtering dual-polarized antenna subarray targeting for base stations in millimeter-wave 5G wireless communications, ” IEEE Trans. Compon., Packag., Manuf. Technol., 2017, 7, (6), pp. 964–973.
[13] Tuan-Yung Han, “Series-Fed Microstrip Array Antenna with Circular Polarization,” International Journal of Antennas and Propagation, Article ID 681431, Volume 2012.
[14] Ku, B.H., Schmalenber, P., Inac, O., Gurbuz, O.D., Lee, J.S., Shizaki, K., Rebeiz, G.M, “A 77–81 16-element phased-array receiver with ±50o beam scanning for advanced automotive radar, ” IEEE Trans. Microw. Theory Tech., 2014, 62, (11), pp. 2823–2832.
[15] Krishna, S., Mishra, G., Sharma, S.K, “A series fed planar microstrip patch array antenna with 1D beam steering for 5G spectrum massive MIMO applications,” 2018 IEEE Radio and Wirel. Symp., Anaheim, CA, Mar. 2018, pp. 209–212.
[16] Yuan, T., Yuan, N., Li, L.-W, “A novel series-fed taper antenna array design,” IEEE Antennas and Wirel. Propag. Lett., 2008, 7, (7), pp. 362–365.
[17] V. Semkin, F. Ferrero, A. Bisognin, J. Ala-Laurinaho, C. Luxey, F. Devillers, and A. V. Räisänen , “Beam Switching Conformal Antenna Array for mm-Wave Communications, ” IEEE Antennas and Wirel. Propag. Lett., VOL. 15, 2016
[18] Carver, K.R., Mink, J.W, “Microstrip antenna technology,” IEEE Trans. Antennas Propag., 1981, AP-29, (1), pp. 2–24.
[19] James, J.R., Hall, P.S, , “Handbook of microstrip antenna,” 1989.
[20] B. Sadhu1 et al., “A 28GHz 32-Element Phased-Array Transceiver IC with Concurrent Dual Polarized Beams and 1.4 Degree Beam-Steering Resolution for 5G Communication,” IEEE International Solid-State Circuits Conference, Feb. 2017.
[21] K. Kibaroglu et al., “An Ultra Low-Cost 32-Element 28 GHz Phased-Array Transceiver with 41 dBm EIRP and 1.0-1.6 Gbps 16-QAM Link at 300 Meters, ” IEEE Radio Frequency Integrated Circuits symposium. June 2017.
[22] Xinyu Gao, Linglong Dai, and Akbar M. Sayeed, “Low RF-Complexity technologies to enable millimeter-wave MIMO with large antenna array for 5G wireless communications,” IEEE Communications Magazine, April. 2018.
[23] H.L.Van Trees, “Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory,” NewYork, NY,USA:Wiley, 2002,pp.1–12.
[24] R.L.Haupt, “Antenna Arrays: A Computational Approach,” Hoboken, NJ, USA:Wiley, 2010,pp.156–176;484–515.
[25] M. A. Sarker, M. S. Hossain, and M. S. Masud, “Robust beamforming synthesis technique for low side lobe level using Taylor excited antenna array,” International Conference on Electrical, Computer & Telecommunication Engineering, Dec. 2016, pp. 1–4.
[26] Ovidio Mario Bucci, M. D′Urso, T. Isernia, P. Angeletti , and G. Toso, “Deterministic synthesis of uniform amplitude sparse arrays via new density taper techniques,” IEEE Trans. Antennas Propag, vol.58,pp.1949–1958,2010.
[27] A. F. Morabito, A. D. Carlo, L. D. Donato, T. Isernia, and G. Sorbello, “Extending spectral factorization to array pattern synthesis including sparseness, mutual coupling, and mounting platform effects,” IEEE Trans. Antennas Propag, vol. 67, n. 7, pp. 4548 – 4559, 2019.
[28] P. Rocca, R. L. Haupt, and A. Massa, “Interference suppression in uniform linear arrays through a dynamic thinning strategy,” IEEE Trans. Antennas Propag, vol. 59, no. 12, Dec. 2011.
[29] Ioannis P. Gravas, Zaharias D. Zaharis, Traianos V. Yioultsis, Pavlos I. Lazaridis, and Thomas D. Xenos, “Adaptive beamforming with sidelobe suppression by placing extra radiation pattern nulls,” IEEE Trans. Antennas Propag, vol. 67 no. 6, 2019.
[30] Giulia Buttazzoni and Roberto Vescovo, “Density tapering of linear arrays radiating pencil beams: a new extremely fast Gaussian approach,” IEEE Trans. Antennas Propag, vol. 65 no. 12, Dec. 2017.
[31] Rinkee Chopra and Girish Kumar, “Series-fed binomial microstrip arrays for extremely low sidelobe level,” IEEE Trans. Antennas Propag, vol. 67 no. 6, June. 2019.
[32] Haneishi, M., Nambara, T., Yoshida, S, “Study on ellipticity properties of single-feed type circularly polarised microstrip antennas,” Electron Lett., 1982, 18, (5), 191–193
[33] Gao, S., Luo, Q., Zhu, F, “Circularly polarized antenna,” John Wiley & Sons, 2014.
[34] Derneryd, A.G, “Linearly polarized microstrip antennas,” IEEE Trans. Antennas Propag., 1976, AP-24, (11), pp. 846–851
[35] Metzler, T, “Microstrip series arrays,” IEEE Trans. Antennas Propag., 1981, AP-29, (1), pp. 174–178.
[36] Jones, B.B., Chow, F.Y.M., Seeto, A.W, “The synthesis of shaped patterns with series-fed microstrip patch arrays,” IEEE Trans. Antennas Propag., 1982, AP-30, (6), pp. 1206–1212.
[37] Babas, D.G., Sahalos, J.N, “Synthesis method of series-fed microstrip antenna arrays,” Electron. Lett., 2007, 43, (2), 78–80.
[38] Sengupta, S., Jackson, D.R., Long, S.A, “A method for analyzing a linear series-fed rectangular microstip array,” IEEE Trans. Antennas Propag., 2015, 63, (8), pp. 3731–3736.
[39] Mailloux, R.J., ‘Phased array antenna handbook’ Artech House, 2005.
[40] Orchard, H.J., Elliott, Stern, G.J, “Optimising the synthesis of shaped antenna patterns,” IET Proc. H, 1985, 132, (1), pp. 63–68.
[41] Patton, W.T., Yorinks, L.H, “Near-field alignment of phased array antennas,” IEEE Trans. Antennas Propag., 1999, 47, (3), pp. 584–591.
[42] “TGS4302 datasheet,” https://www.qorvo.com/products/p/TGS4302
[43] “TGP2102 datasheet,” https://www.qorvo.com/products/p/TGP2102
[44] “Hmc939datasheet,”https://www.analog.com/media/en/technical-documentation/data-sheets/hmc939chip
[45] Ansoft HFSS ver. 14, Ansoft Corporation, Canonsburg, PA, 2010.
[46] NSI-MI Vertical Planar Near-field System, http://www.nsi-mi.com/literature /NSI-400V-23x22
[47] National Instruments Millimeter-Wave Transceiver System, http://www.ni.com/sdr/mmwave/
|